Levy-stable distributions revisited:: Tail index >2 does not exclude the Levy-stable regime

被引:89
作者
Weron, R [1 ]
机构
[1] Wroclaw Univ Technol, Hugo Steinhaus Ctr Stochast Methods, PL-50370 Wroclaw, Poland
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2001年 / 12卷 / 02期
关键词
Levy-stable distribution; tail exponent; hill estimator; econophysics;
D O I
10.1142/S0129183101001614
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Power-law tail behavior and the summation scheme of Levy-stable distributions is the basis for their frequent use as models when fat tails above a Gaussian distribution are observed. However, recent studies suggest that financial asset returns exhibit tail exponents well above the Levy-stable regime (0 < alpha < 2). In this paper, we illustrate that widely used tail index estimates (log-log linear regression and Hill) can give exponents well above the asymptotic limit for alpha close to 2, resulting in overestimation of the tail exponent in finite samples. The reported value of the tail exponent alpha around 3 may very well indicate a Levy-stable distribution with alpha approximate to 1.8.
引用
收藏
页码:209 / 223
页数:15
相关论文
共 36 条
[1]  
[Anonymous], PRACTICAL GUIDE HEAV
[2]   Tail index estimation, pareto quantile plots, and regression diagnostics [J].
Beirlant, J ;
Vynckier, P ;
Teugels, JL .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (436) :1659-1667
[3]   METHOD FOR SIMULATING STABLE RANDOM-VARIABLES [J].
CHAMBERS, JM ;
MALLOWS, CL ;
STUCK, BW .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1976, 71 (354) :340-344
[4]  
Danielsson J., 1997, J Empir Finance, V4, P241, DOI [10.1016/S0927-5398(97)00008-X, DOI 10.1016/S0927-5398(97)00008-X]
[5]   Selecting the optimal sample fraction in univariate extreme value estimation [J].
Drees, H ;
Kaufmann, E .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 75 (02) :149-172
[6]   ESTIMATING THE STABLE INDEX-ALPHA IN ORDER TO MEASURE TAIL THICKNESS - A CRITIQUE [J].
DUMOUCHEL, WH .
ANNALS OF STATISTICS, 1983, 11 (04) :1019-1031
[7]   ASYMPTOTIC NORMALITY OF MAXIMUM-LIKELIHOOD ESTIMATE WHEN SAMPLING FROM A STABLE DISTRIBUTION [J].
DUMOUCHEL, WH .
ANNALS OF STATISTICS, 1973, 1 (05) :948-957
[8]  
Embrechts P., 1997, MODELING EXTREMAL EV
[9]  
Feller W., 1971, INTRO PROBABILITY TH
[10]  
Fofack H., 1999, EXTREMES, V2, P39, DOI DOI 10.1023/A:1009908026279