Hierarchical genetic fuzzy systems

被引:39
作者
Delgado, MR [1 ]
Von Zuben, F [1 ]
Gomide, F [1 ]
机构
[1] Univ Estadual Campinas, Dept Comp Engn & Ind Automat, FEEC, BR-13083970 Campinas, SP, Brazil
关键词
D O I
10.1016/S0020-0255(01)00140-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a hierarchical evolutionary approach to optimize the parameters of Takagi-Sugeno (TS) fuzzy systems. The approach includes a least-squares method to determine the parameters of nonlinear consequents. A pruning procedure is developed to avoid redundancy in each rule consequent and to achieve proper representation flexibility. The performance of the hierarchical evolutionary approach is evaluated using function approximation and classification problems. They demonstrate that the evolutionary algorithm, working together with optimization and pruning procedures, provides structurally simple fuzzy systems whose performance seems to be better than the ones produced by alternative approaches. (C) 2001 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:29 / 52
页数:24
相关论文
共 26 条
[1]  
Castellano G, 2000, NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, P42, DOI 10.1109/FUZZY.2000.838631
[2]   A two-stage evolutionary process for designing TSK fuzzy rule-based systems [J].
Cordón, O ;
Herrera, F .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1999, 29 (06) :703-715
[3]  
Delgado MR, 2000, NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, P447, DOI 10.1109/FUZZY.2000.838701
[4]  
DELGADO MR, 2000, P 8 INF PROC MAN UNC, P650
[5]   The use of multiple measurements in taxonomic problems [J].
Fisher, RA .
ANNALS OF EUGENICS, 1936, 7 :179-188
[6]  
Hardle W., 1990, APPL NONPARAMETRIC R, DOI DOI 10.1017/CCOL0521382483
[7]   A cascaded genetic algorithm for improving fuzzy-system design [J].
Heider, H ;
Drabe, T .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 1997, 17 (04) :351-368
[8]  
HOFFMANN F, 1999, P IPMU 99 MADR SPAIN, P438
[9]  
ISHIBUCHI H, 1999, P FUZZ IEEE 99 SEOUL, P779
[10]   ANFIS - ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEM [J].
JANG, JSR .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1993, 23 (03) :665-685