Lagrangian velocity statistics in turbulent flows:: Effects of dissipation -: art. no. 214502

被引:83
作者
Chevillard, L [1 ]
Roux, SG [1 ]
Levêque, E [1 ]
Mordant, N [1 ]
Pinton, JF [1 ]
Arneodo, A [1 ]
机构
[1] Ecole Normale Super Lyon, Phys Lab, F-69007 Lyon, France
关键词
D O I
10.1103/PhysRevLett.91.214502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the multifractal formalism to describe the effects of dissipation on Lagrangian velocity statistics in turbulent flows. We analyze high Reynolds number experiments and direct numerical simulation data. We show that this approach reproduces the shape evolution of velocity increment probability density functions from Gaussian to stretched exponentials as the time lag decreases from integral to dissipative time scales. A quantitative understanding of the departure from scaling exhibited by the magnitude cumulants, early in the inertial range, is obtained with a free parameter function D(h) which plays the role of the singularity spectrum in the asymptotic limit of infinite Reynolds number. We observe that numerical and experimental data are accurately described by a unique quadratic D(h) spectrum which is found to extend from h(min)approximate to0.18 to h(max)approximate to1.
引用
收藏
页码:1 / 214502
页数:4
相关论文
共 28 条
[1]  
ARINGAZIN AK, CONDMAT0305186
[2]   PRESSURE FLUCTUATIONS IN ISOTROPIC TURBULENCE [J].
BATCHELOR, GK .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1951, 47 (02) :359-374
[3]   Dynamical foundations of nonextensive statistical mechanics [J].
Beck, C .
PHYSICAL REVIEW LETTERS, 2001, 87 (18) :180601-1
[4]   ON THE SCALING OF 3-DIMENSIONAL HOMOGENEOUS AND ISOTROPIC TURBULENCE [J].
BENZI, R ;
CILIBERTO, S ;
BAUDET, C ;
CHAVARRIA, GR .
PHYSICA D, 1995, 80 (04) :385-398
[5]   MULTIFRACTALITY IN THE STATISTICS OF THE VELOCITY-GRADIENTS IN TURBULENCE [J].
BENZI, R ;
BIFERALE, L ;
PALADIN, G ;
VULPIANI, A ;
VERGASSOLA, M .
PHYSICAL REVIEW LETTERS, 1991, 67 (17) :2299-2302
[6]   THE MULTIFRACTAL LAGRANGIAN NATURE OF TURBULENCE [J].
BORGAS, MS .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1993, 342 (1665) :379-411
[7]   Intermittency of 1D velocity spatial profiles in turbulence:: a magnitude cumulant analysis [J].
Delour, J ;
Muzy, JF ;
Arnéodo, A .
EUROPEAN PHYSICAL JOURNAL B, 2001, 23 (02) :243-248
[8]   ESTIMATION OF THE KOLMOGOROV CONSTANT (C-0) FOR THE LAGRANGIAN STRUCTURE-FUNCTION, USING A 2ND-ORDER LAGRANGIAN MODEL OF GRID TURBULENCE [J].
DU, SM ;
SAWFORD, BL ;
WILSON, JD ;
WILSON, DJ .
PHYSICS OF FLUIDS, 1995, 7 (12) :3083-3090
[9]   A PREDICTION OF THE MULTIFRACTAL MODEL - THE INTERMEDIATE DISSIPATION RANGE [J].
FRISCH, U ;
VERGASSOLA, M .
EUROPHYSICS LETTERS, 1991, 14 (05) :439-444
[10]  
Frisch U., 1985, Predictability in Geophysical Fluid Dynamics, P84