Functional characterization and cold sensitivity of T1313A, a new mutation of the skeletal muscle sodium channel causing paramyotonia congenita in humans

被引:36
作者
Bouhours, M
Sternberg, D
Davoine, CS
Ferrer, X
Willer, JC
Fontaine, B
Tabti, N [1 ]
机构
[1] Univ Paris, U546, Ctr Med, Fac Med Pitie Salpetriere,INSERM, F-75013 Paris, France
[2] Univ Paris, Neurophysiol Lab, Ctr Med, Fac Med Pitie Salpetriere, F-75013 Paris, France
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2004年 / 554卷 / 03期
关键词
D O I
10.1113/jphysiol.2003.053082
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Paramyotonia congenita (PC) is a dominantly inherited skeletal muscle disorder caused by missense mutations in the SCN4A gene encoding the pore-forming alpha subunit (hSkM1) of the skeletal muscle Na+ channel. Muscle stiffness is the predominant clinical symptom. It is usually induced by exposure to cold and is aggravated by exercise. The most prevalent PC mutations occur at T1313 on DIII-DIV linker, and at R1448 on DIV-S4 of the alpha subunit. Only one substitution has been described at T1313 (T1313M), whereas four distinct amino-acid substitutions were found at R1448 (R1448C/H/P/S). We report herein a novel mutation at position 1313 (T1313A) associated with a typical phenotype of PC. We stably expressed T1313A or wild-type (hSkM1) channels in HEK293 cells, and performed a detailed study on mutant channel gating defects using the whole-cell configuration of the patch-clamp technique. T1313A mutation impaired Na+ channel fast inactivation: it slowed and reduced the voltage sensitivity of the kinetics, accelerated the recovery, and decreased the voltage-dependence of the steady state. Slow inactivation was slightly enhanced by the T1313A mutation: the voltage dependence was shifted toward hyperpolarization and its steepness was reduced compared to wild-type. Deactivation from the open state assessed by the tail current decay was only slowed at positive potentials. This may be an indirect consequence of disrupted fast inactivation. Deactivation from the inactivation state was hastened. The T1313A mutation did not modify the temperature sensitivity of the Na+ channel per se. However, gating kinetics of the mutant channels were further slowed with cooling, and reached levels that may represent the threshold for myotonia. In conclusion, our results confirm the role of T1313 residue in Na+ channel fast inactivation, and unveil subtle changes in other gating processes that may influence the clinical phenotype.
引用
收藏
页码:635 / 647
页数:13
相关论文
共 50 条
[1]   INACTIVATION OF OPEN AND CLOSED SODIUM-CHANNELS DETERMINED SEPARATELY [J].
ALDRICH, RW ;
STEVENS, CF .
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 1983, 48 :147-153
[2]   VOLTAGE CLAMP OF RAT AND HUMAN SKELETAL-MUSCLE - MEASUREMENTS WITH AN IMPROVED LOOSE-PATCH TECHNIQUE [J].
ALMERS, W ;
ROBERTS, WM ;
RUFF, RL .
JOURNAL OF PHYSIOLOGY-LONDON, 1984, 347 (FEB) :751-+
[3]   INACTIVATION OF SODIUM CHANNEL .2. GATING CURRENT EXPERIMENTS [J].
ARMSTRONG, CM ;
BEZANILLA, F .
JOURNAL OF GENERAL PHYSIOLOGY, 1977, 70 (05) :567-590
[4]   PROTEIN-COMPONENTS OF THE PURIFIED SODIUM-CHANNEL FROM RAT SKELETAL-MUSCLE SARCOLEMMA [J].
BARCHI, RL .
JOURNAL OF NEUROCHEMISTRY, 1983, 40 (05) :1377-1385
[5]   Characterization of a new sodium channel mutation at arginine 1448 associated with moderate paramyotonia, congenita in humans [J].
Bendahhou, S ;
Cummins, TR ;
Kwiecinski, H ;
Waxman, SG ;
Ptácek, LJ .
JOURNAL OF PHYSIOLOGY-LONDON, 1999, 518 (02) :337-344
[6]   Impairment of slow inactivation as a common mechanism for periodic paralysis in DIIS4-S5 [J].
Bendahhou, S ;
Cummins, TR ;
Kula, RW ;
Fu, YH ;
Ptácek, LJ .
NEUROLOGY, 2002, 58 (08) :1266-1272
[7]   Spectrum of sodium channel disturbances in the nondystrophic myotonias and periodic paralyses [J].
Cannon, SC .
KIDNEY INTERNATIONAL, 2000, 57 (03) :772-779
[8]   From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels [J].
Catterall, WA .
NEURON, 2000, 26 (01) :13-25
[9]   SODIUM-CHANNEL MUTATIONS IN PARAMYOTONIA-CONGENITA UNCOUPLE INACTIVATION FROM ACTIVATION [J].
CHAHINE, M ;
GEORGE, AL ;
ZHOU, M ;
JI, S ;
SUN, WJ ;
BARCHI, RL ;
HORN, R .
NEURON, 1994, 12 (02) :281-294
[10]   SLOW CHANGES IN MEMBRANE PERMEABILITY AND LONG-LASTING ACTION POTENTIALS IN AXONS PERFUSED WITH FLUORIDE SOLUTIONS [J].
CHANDLER, WK ;
MEVES, H .
JOURNAL OF PHYSIOLOGY-LONDON, 1970, 211 (03) :707-&