Lemon fruit tonoplasts, unlike those of seedling epicotyls, contain nitrate-insensitive H+-ATPase activity (Muller, M. L,, Irkens-Kiesecker, U,, Rubinstein, B., and Taiz, L. (1996) J, Biol. Chem. 271, 1916-1924). However, the degree of nitrate-insensitivity fluctuates during the course of the year with a seasonal frequency. Nitrate uncouples H+ pumping from ATP hydrolysis both in epicotyls and in nitrate-sensitive fruit V-ATPases. Neither bafilomycin nor oxidation cause uncoupling. The initial rate H+/ATP coupling ratios of epicotyl and the nitrate-sensitive fruit proton pumping activities are the same. However, the H+/ATP coupling ratio of the nitrate-insensitive fruit H+ pumping activity is lower than that of nitrate-sensitive and epicotyl V-ATPases, Several properties of the nitrate-insensitive H+-ATPase of the fruit indicate that it is a modified V-ATPase rather than a P-ATPase: 1) insensitivity to low concentrations of vanadate; 2) it is initially strongly uncoupled by nitrate, but regains coupling as catalysis proceeds; 3) both the nitrate-sensitive and nitrate-insensitive fruit H+-pumps have identical K-m values for MgATP, and show similar pH-dependent slip and proton leakage rates. We conclude that the ability of the juice sac V-ATPase to build up steep pH gradients involves three factors: variable coupling, i.e. the ability to regain coupling under conditions that initially induce uncoupling; a low pH dependent slip rate; the low proton permeability of the membrane.