On the eigenfunctions of the Dirac operator on spheres and real hyperbolic spaces

被引:196
作者
Camporesi, R [1 ]
Higuchi, A [1 ]
机构
[1] UNIV BERN, INST THEORET PHYS, CH-3012 BERN, SWITZERLAND
关键词
Dirac operator; eigenfunctions;
D O I
10.1016/0393-0440(95)00042-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The eigenfunctions of the Dirac operator on spheres and real hyperbolic spaces of arbitrary dimension are computed by separating variables in geodesic polar coordinates. These eigenfunctions are then used to derive the heat kernel of the iterated Dirac operator on these spaces. They are then studied as cross sections of homogeneous vector bundles, and a group-theoretic derivation of the spinor spherical functions and heat kernel is given based on Harish-Chandra's formula for the radial part of the Casimir operator.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 16 条
[1]  
[Anonymous], 1980, Gos. Izd-vo Fiz.-Mat. Literatury
[2]  
Barut A. O., 1986, THEORY GROUP REPRESE
[3]   SPECTRAL FUNCTIONS AND ZETA-FUNCTIONS IN HYPERBOLIC SPACES [J].
CAMPORESI, R ;
HIGUCHI, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (08) :4217-4246
[4]   HARMONIC-ANALYSIS AND PROPAGATORS ON HOMOGENEOUS SPACES [J].
CAMPORESI, R .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 196 (1-2) :1-134
[5]   THE SPINOR HEAT KERNEL IN MAXIMALLY SYMMETRICAL SPACES [J].
CAMPORESI, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 148 (02) :283-308
[6]   THE PLANCHEREL MEASURE FOR P-FORMS IN REAL HYPERBOLIC SPACES [J].
CAMPORESI, R ;
HIGUCHI, A .
JOURNAL OF GEOMETRY AND PHYSICS, 1994, 15 (01) :57-94
[7]  
CAMPORESI R, 1993, SPHERICAL TRANSFORM
[8]  
CHOQUETBRUHAT Y, 1982, ANAL MANIFOLDS PHYSI
[9]   SPINOR STRUCTURES ON SPHERES AND PROJECTIVE SPACES [J].
DABROWSKI, L ;
TRAUTMAN, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (08) :2022-2028
[10]  
Helgason S., 1979, Differential geometry, Lie groups and symmetric spaces