Simple nonequilibrium extension of the Ising model

被引:7
作者
Achahbar, A
Alonso, JJ
Munoz, MA
机构
[1] ECOLE SUPER PHYS & CHIM IND VILLE PARIS,PHYS & MECAN MILIEUX HETEROGENES LAB,F-75231 PARIS 05,FRANCE
[2] IBM CORP,THOMAS J WATSON RES CTR,YORKTOWN HTS,NY 10598
来源
PHYSICAL REVIEW E | 1996年 / 54卷 / 05期
关键词
D O I
10.1103/PhysRevE.54.4838
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a simple nonequilibrium version of the Ising model, exhibiting an order-disorder phase transition. It corresponds to the competition of two different kinetic processes: one of them ordering the system and the other one disordering it (temperatures zero and infinity, respectively). Owing to the simplicity of the model, it is possible to define a pseudotemperature T characterizing the system. By using T we elucidate a striking point recently arisen in the literature, namely, how does the critical region of nonequilibrium systems compare to that of their equilibrium counterparts. Extensive numerical simulations are presented, and the conclusion is made that the model belongs in the equilibrium Ising model universality class confirming a well known conjecture.
引用
收藏
页码:4838 / 4843
页数:6
相关论文
共 19 条
  • [1] Critical and scaling properties of cluster distributions in nonequilibrium Ising-like systems
    Alonso, JJ
    LopezLacomba, AI
    Marro, J
    [J]. PHYSICAL REVIEW E, 1995, 52 (06): : 6006 - 6012
  • [2] FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS
    BINDER, K
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02): : 119 - 140
  • [3] DISTRIBUTION OF FRACTAL CLUSTERS AND SCALING IN THE ISING-MODEL
    CAMBIER, JL
    NAUENBERG, M
    [J]. PHYSICAL REVIEW B, 1986, 34 (11): : 8071 - 8079
  • [4] NONEQUILIBRIUM SPIN MODELS WITH ISING UNIVERSAL BEHAVIOR
    DEOLIVEIRA, MJ
    MENDES, JFF
    SANTOS, MA
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (10): : 2317 - 2324
  • [5] THEORY OF CONDENSATION AND CRITICAL POINT
    FISHER, ME
    [J]. PHYSICS-NEW YORK, 1967, 3 (05): : 255 - &
  • [6] EFFECTIVE HAMILTONIAN DESCRIPTION OF NONEQUILIBRIUM SPIN SYSTEMS
    GARRIDO, PL
    MARRO, J
    [J]. PHYSICAL REVIEW LETTERS, 1989, 62 (17) : 1929 - 1932
  • [7] GARRIDO PL, 1995, COMPLEXITY NONEQUILI
  • [8] TIME-DEPENDENT STATISTICS OF ISING MODEL
    GLAUBER, RJ
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (02) : 294 - &
  • [9] A NEW TYPE OF KINETIC CRITICAL PHENOMENON
    GRASSBERGER, P
    KRAUSE, F
    VONDERTWER, T
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (03): : L105 - L109
  • [10] STATISTICAL-MECHANICS OF PROBABILISTIC CELLULAR AUTOMATA
    GRINSTEIN, G
    JAYAPRAKASH, C
    YU, H
    [J]. PHYSICAL REVIEW LETTERS, 1985, 55 (23) : 2527 - 2530