Hyperbolic Kac-Moody algebras and chaos in Kaluza-Klein models

被引:124
作者
Damour, T
Henneaux, M
Julia, B
Nicolai, H
机构
[1] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
[2] Free Univ Brussels, B-1050 Brussels, Belgium
[3] Ctr Estudios Cient, Valdivia, Chile
[4] Ecole Normale Super, Lab Phys Theor, F-75231 Paris 05, France
[5] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany
关键词
D O I
10.1016/S0370-2693(01)00498-1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Some time ago, it was found that the never-ending oscillatory chaotic behaviour discovered by Belinskii, Khalatnikov and Lifshitz (BKL) for the generic solution of the vacuum Einstein equations in the vicinity of a spacelike ("cosmological") singularity disappears in spacetime dimensions D equivalent to d + 1 > 10. Recently, a study of the generalization of the BKL chaotic behaviour to the superstring effective Lagrangians has revealed that this chaos is rooted in the structure of the fundamental Weyl chamber of some underlying hyperbolic Kac-Moody algebra. In this Letter we show that the same connection applies to pure gravity in any spacetime dimension greater than or equal to 4, where the relevant algebras are AE(d). In this way the disappearance of chaos in pure gravity models in D greater than or equal to 11 dimensions becomes linked to the fact that the Kac-Moody algebras AE,I are no longer hyperbolic for d greater than or equal to 10. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:323 / 330
页数:8
相关论文
共 41 条
[1]  
ANDERSSON L, GRQC0001047
[2]  
[Anonymous], 1975, Homogeneous Relativistic Cosmologies. Princeton Series in Physics
[3]   OSCILLATORY APPROACH TO A SINGULAR POINT IN RELATIVISTIC COSMOLOGY [J].
BELINSKI.VA ;
KHALATNI.IM ;
LIFSHITZ, EM .
ADVANCES IN PHYSICS, 1970, 19 (80) :525-&
[4]  
Belinskii V. A., 1969, Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, V57, P2163
[5]  
Belinskii V. A., 1973, ZH EKSP TEOR FIZ, V36, p[1121, 1972, 591]
[6]   A GENERAL-SOLUTION OF THE EINSTEIN EQUATIONS WITH A TIME SINGULARITY [J].
BELINSKII, VA ;
KHALATNIKOV, IM ;
LIFSHITZ, EM .
ADVANCES IN PHYSICS, 1982, 31 (06) :639-667
[7]  
BELINSKII VA, 1969, ZH EKSP TEOR FIZ, V56, P1701
[8]   The singularity in generic gravitational collapse is spacelike, local and oscillatory [J].
Berger, BK ;
Garfinkle, D ;
Isenberg, J ;
Moncrief, V ;
Weaver, M .
MODERN PHYSICS LETTERS A, 1998, 13 (19) :1565-1573
[9]   10-DIMENSIONAL MAXWELL-EINSTEIN SUPERGRAVITY, ITS CURRENTS, AND THE ISSUE OF ITS AUXILIARY FIELDS [J].
BERGSHOEFF, E ;
DEROO, M ;
DEWIT, P ;
VANNIEUWENHUIZEN, P .
NUCLEAR PHYSICS B, 1982, 195 (01) :97-136
[10]   COUPLING THE SO(2) SUPERGRAVITY THROUGH DIMENSIONAL REDUCTION [J].
CHAMSEDDINE, AH ;
NICOLAI, H .
PHYSICS LETTERS B, 1980, 96 (1-2) :89-93