First-principles calculations of magnetic circular dichroism spectra

被引:84
作者
Ganyushin, Dmitry [1 ]
Neese, Frank [1 ]
机构
[1] Univ Bonn, Lehrstuhl Theoret Chem, D-53115 Bonn, Germany
关键词
D O I
10.1063/1.2894297
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An elaborate approach for the prediction of magnetic circular dichroism (MCD) spectra in the framework of highly correlated multiconfigurational ab initio methods is presented. The MCD transitions are computed by the explicit treatment of spin-orbit coupled (SOC) and spin-spin coupled (SSC) N-electron states. These states are obtained from the diagonalization of the SOC and SSC operators along with the spin and orbital Zeeman operators in the basis of a preselected number of roots of the spin-free Hamiltonian. Therefore, zero-field splittings due to the SOC and SSC interactions along with the magnetic field splittings are explicitly accounted for in the ground as well as the excited states. This makes it possible to calculate simultaneously all MCD A, B, and C terms even beyond the linear response limit. The SOC is computed using a multicenter mean-field approximation to the Breit-Pauli Hamiltonian. Two-electron SSC terms are included in the treatment without further approximations. The MCD transition intensities are subjected to numerical orientational averaging in order to treat the most commonly encountered case of randomly oriented molecules. The simulated MCD spectra for the OH, NH, and CH radicals as well as for [Fe(CN)(6)](3-) are in good agreement with the experimental spectra. In the former case, the significant effects of the inert gas matrices in which the experimental spectra were obtained were modeled in a phenomenological way. (c) 2008 American Institute of Physics.
引用
收藏
页数:13
相关论文
共 102 条
  • [1] [Anonymous], 1967, ELEMENTARY THEORY AN
  • [2] [Anonymous], 1992, Methods of Molecular Quantum Mechanics
  • [3] DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR
    BECKE, AD
    [J]. PHYSICAL REVIEW A, 1988, 38 (06): : 3098 - 3100
  • [4] Spin-orbit matrix elements for internally contracted multireference configuration interaction wavefunctions
    Berning, A
    Schweizer, M
    Werner, HJ
    Knowles, PJ
    Palmieri, P
    [J]. MOLECULAR PHYSICS, 2000, 98 (21) : 1823 - 1833
  • [5] Molecular and electronic structure of four- and five-coordinate cobalt complexes containing two o-phenylenediamine- or two o-aminophenol-type ligands at various oxidation levels:: An experimental, density functional, and correlated ab initio study
    Bill, E
    Bothe, E
    Chaudhuri, P
    Chlopek, K
    Herebian, D
    Kokatam, S
    Ray, K
    Weyhermüller, T
    Neese, F
    Wieghardt, K
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2005, 11 (01) : 204 - 224
  • [6] PARAMAGNETIC RESONANCE IN SOME COMPLEX CYANIDES OF THE IRON GROUP .2. THEORY
    BLEANEY, B
    OBRIEN, MCM
    [J]. PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION B, 1956, 69 (12): : 1216 - 1230
  • [7] Theoretical determination of the excited states and of g-factors of the creutz-taube ion, [(NH3)5-Ru-pyrazine-Ru-(NH3)5]5+
    Bolvin, Helene
    [J]. INORGANIC CHEMISTRY, 2007, 46 (02) : 417 - 427
  • [8] TERM VALUES AND MOLECULAR PARAMETERS FOR CH AND CH+
    BOTTERUD, I
    LOFTHUS, A
    VESETH, L
    [J]. PHYSICA SCRIPTA, 1973, 8 (05): : 218 - 224
  • [9] Spectroscopic and computational studies on the adenosylcobalamin-dependent methylmalonyl-CoA mutase:: Evaluation of enzymatic contributions to Co-C bond activation in the Co3+ ground state
    Brooks, AJ
    Vlasie, M
    Banerjee, R
    Brunold, TC
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (26) : 8167 - 8180
  • [10] INDIVIDUALIZED CONFIGURATION SELECTION IN CI CALCULATIONS WITH SUBSEQUENT ENERGY EXTRAPOLATION
    BUENKER, RJ
    PEYERIMH.SD
    [J]. THEORETICA CHIMICA ACTA, 1974, 35 (01): : 33 - 58