Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid

被引:956
作者
Magasinski, Alexandre [2 ]
Zdyrko, Bogdan [1 ]
Kovalenko, Igor [2 ]
Hertzberg, Benjamin [2 ]
Burtovyy, Ruslan [1 ]
Huebner, Christopher F. [2 ,4 ]
Fuller, Thomas F. [3 ]
Luzinov, Igor [1 ]
Yushin, Gleb [2 ]
机构
[1] Clemson Univ, Sch Mat Sci & Engn, Clemson, SC 29631 USA
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[4] Streamline Nanotechnol Inc, Atlanta, GA USA
关键词
Li-ion; anode; Si; nanopowder; polyacrylic acid; binder; NEGATIVE ELECTRODES; MECHANICAL-PROPERTIES; HIGH-CAPACITY; PERFORMANCE; MORPHOLOGY; CELLULOSE; TIME;
D O I
10.1021/am100871y
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Si-based Li-ion battery anodes offer specific capacity an order of magnitude beyond that of conventional graphite. However, the formation of stable Si anodes is a challenge because of significant volume changes occuring during their electrochemical alloying and dealloying with Li. Binder selection and optimization may allow significant improvements in the stability of Si-based anodes. Most studies of Si anodes have involved the use of carboxymethylcellulose (CMC) and poly(vinylidene fluoride) (PVDF) binders. Herein, we show for the first time that pure poly(acryllic acid) (PAA), possessing certain mechanical properties comparable to those of CMC but containing a higher concentration of carboxylic functional groups, may offer superior performance as a binder for Si anodes. We further show the positive impact of carbon coating on the stability of the anode. The carbon-coated Si nanopowder anodes, tested between 0.01 and 1 V vs Li/Li+ and containing as little as 15 wt% of PAA, showed excellent stability during the first hundred cycles. The results obtained open new avenues to explore a novel series of binders from the polyvinyl acids (PVA) family.
引用
收藏
页码:3004 / 3010
页数:7
相关论文
共 32 条
[1]   SPATIALLY RESOLVED RAMAN STUDIES OF DIAMOND FILMS GROWN BY CHEMICAL VAPOR-DEPOSITION [J].
AGER, JW ;
VEIRS, DK ;
ROSENBLATT, GM .
PHYSICAL REVIEW B, 1991, 43 (08) :6491-6499
[2]   The Mechanical Properties of a Composite Coating with a Polymer Matrix Based on Sodium Carboxymethylcellulose and Aluminum Powder [J].
Antonova, N. M. .
RUSSIAN JOURNAL OF NON-FERROUS METALS, 2009, 50 (04) :419-423
[3]   Si electrodes for li-ion batteries - A new way to look at an old problem [J].
Beattie, S. D. ;
Larcher, D. ;
Morcrette, M. ;
Simon, B. ;
Tarascon, J. -M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (02) :A158-A163
[4]   The electrochemical reaction of Li with amorphous Si-Sn alloys [J].
Beaulieu, LY ;
Hewitt, KC ;
Turner, RL ;
Bonakdarpour, A ;
Abdo, AA ;
Christensen, L ;
Eberman, KW ;
Krause, JL ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (02) :A149-A156
[5]  
Brandrup J., 1999, Polymer Handbook, VII
[6]   Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries [J].
Bridel, J. -S. ;
Azais, T. ;
Morcrette, M. ;
Tarascon, J. -M. ;
Larcher, D. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :1229-1241
[7]   Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries [J].
Buqa, H. ;
Holzapfel, M. ;
Krumeich, F. ;
Veit, C. ;
Novak, P. .
JOURNAL OF POWER SOURCES, 2006, 161 (01) :617-622
[8]   Structural and electrochemical study of the reaction of lithium with silicon nanowires [J].
Chan, Candace K. ;
Ruffo, Riccardo ;
Hong, Seung Sae ;
Huggins, Robert A. ;
Cui, Yi .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :34-39
[9]   Binder effect on cycling performance of silicon/carbon composite anodes for lithium ion batteries [J].
Chen, Libao ;
Xie, Xiaohua ;
Xie, Jingying ;
Wang, Ke ;
Yang, Jun .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2006, 36 (10) :1099-1104
[10]   Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers [J].
Chen, ZH ;
Christensen, L ;
Dahn, JR .
ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (11) :919-923