Reduced two-dimensional one-phase model for analysis of the anode of a DMFC

被引:50
作者
Birgersson, E [1 ]
Nordlund, J
Ekström, H
Vynnycky, M
Lindbergh, G
机构
[1] Royal Inst Technol, Dept Mech, Faxen Lab, SE-10044 Stockholm, Sweden
[2] Royal Inst Technol, Dept Chem Engn & Technol, SE-10044 Stockholm, Sweden
关键词
D O I
10.1149/1.1606455
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
An isothermal two-dimensional liquid phase model for the conservation of mass, momentum, and species in the anode of a direct methanol fuel cell (DMFC) is presented and analyzed. The inherent electrochemistry in the DMFC anode active layer is reduced to boundary conditions via parameter adaption. The model is developed for the case when the geometry aspect ratio is small, and it is shown that, under realistic operating conditions, a reduced model, which nonetheless describes all the essential physics of the full model, can be derived. The significant benefits of this approach are that physical trends become much more apparent than in the full model and that there is considerable reduction in the time required to compute numerical solutions, a fact especially useful for wide-ranging parameter studies. Such a study is then performed in terms of the three nondimensional parameters that emerge from the analysis, and we subsequently interpret our results in terms of the dimensional design and operating parameters. In particular, we highlight their effect on methanol mass transfer in the flow channel and on the current density. The results indicate the relative importance of mass-transfer resistance in both the flow channel and the adjacent porous backing. (C) 2003 The Electrochemical Society.
引用
收藏
页码:A1368 / A1376
页数:9
相关论文
共 27 条
[1]  
ALAZMI B, 2001, INT J HEAT MASS TRAN, V44
[2]   Methanol fuel cell model: Anode [J].
Baxter, SF ;
Battaglia, VS ;
White, RE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (02) :437-447
[3]   Process engineering of the direct methanol fuel cell [J].
Dohle, H ;
Divisek, J ;
Jung, R .
JOURNAL OF POWER SOURCES, 2000, 86 (1-2) :469-477
[4]   Three-dimensional numerical simulation of straight channel PEM fuel cells [J].
Dutta, S ;
Shimpalee, S ;
Van Zee, JW .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2000, 30 (02) :135-146
[5]   A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells [J].
Heinzel, A ;
Barragán, VM .
JOURNAL OF POWER SOURCES, 1999, 84 (01) :70-74
[6]  
*IUPAC, 1996, SOL DAT SER, V62
[7]  
KAURANEN PS, 1996, ACTA POLYTECH SCAND, V237, P1
[8]  
KAVIANY M, 1995, PRINCIPLES HEAT TRAN, P15
[9]   Two-dimensional simulation of direct methanol fuel cell - A new (embedded) type of current collector [J].
Kulikovsky, AA ;
Divisek, J ;
Kornyshev, AA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (03) :953-959
[10]   Two-dimensional numerical modelling of a direct methanol fuel cell [J].
Kulikovsky, AA .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2000, 30 (09) :1005-1014