Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) associates with TNF receptor-associated factor 6 and TANK-Binding kinase 1, and activates two distinct transcription factors, NF-κB and IFN-regulatory factor-3, in the toll-like receptor signaling

被引:560
作者
Sato, S
Sugiyama, M
Yamamoto, M
Watanabe, Y
Kawai, T
Takeda, K
Akira, S
机构
[1] Osaka Univ, Microbial Dis Res Inst, Dept Host Def, Suita, Osaka 5650871, Japan
[2] Japan Sci & Technol Corp, Explorat Res Adv Technol, Osaka, Japan
关键词
D O I
10.4049/jimmunol.171.8.4304
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
We previously reported a new Toll/IL-1R (TIR)-containing molecule, named TIR domain-containing adaptor inducing IFN-beta (TRIF). Although initial study indicated that TRIF possesses the ability,to activate not only the NF-kappaB-dependent but also the IFN-beta promoters, the molecular mechanisms of TRIF-induced signaling are poorly understood. In this study, we investigated the signaling cascades through TRIF. TNF receptor-associated factor (TRAF)6 interacted with TRIF through the TRAIT domain of TRAF6 and TRAF6-binding motifs found in the N-terminal portion of TRIF. Disruption of TRAF6-binding motifs of TRIF disabled it from associating with TRAF6, and resulted in a reduction in the TRIF-induced activation of the NF-kappaB-dependent but not IFN-beta promoter. TANK-binding kinase (TBK)-1, which was recently reported to be a kinase of IFN regulatory factor-3, which is an essential transcription factor for IFN-beta expression, also associated with the N-terminal region of TRIF. Moreover, the association between TRIF and TBK1 appeared to require the kinase activity of TBK1, as well as phosphorylation of TRIF. Because TRAF6 and TBK1 bind close the region of TRIF, it seems that TRAF6 physically prevents the association between TRIF and TBK1. Taken together, these results demonstrate that TRIF associates with TRAF6 and TBK1 independently, and activates two distinct transcription factors, NF-kappaB and IFN regulatory factor-3, respectively.
引用
收藏
页码:4304 / 4310
页数:7
相关论文
共 23 条
  • [1] Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function
    Adachi, O
    Kawai, T
    Takeda, K
    Matsumoto, M
    Tsutsui, H
    Sakagami, M
    Nakanishi, K
    Akira, S
    [J]. IMMUNITY, 1998, 9 (01) : 143 - 150
  • [2] Toll-like receptors in the induction of the innate immune response
    Aderem, A
    Ulevitch, RJ
    [J]. NATURE, 2000, 406 (6797) : 782 - 787
  • [3] Toll-like receptors: critical proteins linking innate and acquired immunity
    Akira, S
    Takeda, K
    Kaisho, T
    [J]. NATURE IMMUNOLOGY, 2001, 2 (08) : 675 - 680
  • [4] Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3
    Alexopoulou, L
    Holt, AC
    Medzhitov, R
    Flavell, RA
    [J]. NATURE, 2001, 413 (6857) : 732 - 738
  • [5] Association of the adaptor TANK with the IκB kinase (IKK) regulator NEMO connects IKK complexes with IKKε and TBK1 kinases
    Chariot, A
    Leonardi, A
    Müller, J
    Bonif, M
    Brown, K
    Siebenlist, U
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (40) : 37029 - 37036
  • [6] IRF3 mediates a TLR3/TLR4-specific antiviral gene program
    Doyle, SE
    Vaidya, SA
    O'Connell, R
    Dadgostar, H
    Dempsey, PW
    Wu, TT
    Rao, G
    Sun, R
    Haberland, ME
    Modlin, RL
    Cheng, G
    [J]. IMMUNITY, 2002, 17 (03) : 251 - 263
  • [7] IKKε and TBK1 are essential components of the IRF3 signaling pathway
    Fitzgerald, KA
    McWhirter, SM
    Faia, KL
    Rowe, DC
    Latz, E
    Golenbock, DT
    Coyle, AJ
    Liao, SM
    Maniatis, T
    [J]. NATURE IMMUNOLOGY, 2003, 4 (05) : 491 - 496
  • [8] The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors
    Horng, T
    Barton, GM
    Flavell, RA
    Medzhitov, R
    [J]. NATURE, 2002, 420 (6913) : 329 - 333
  • [9] Innate immune recognition
    Janeway, CA
    Medzhitov, R
    [J]. ANNUAL REVIEW OF IMMUNOLOGY, 2002, 20 : 197 - 216
  • [10] Poly(dI•dC)-induced toll-like receptor 3 (TLR3)-mediated activation of NFκB and MAP kinase is through an interleukin-1 receptor-associated kinase (IRAK)-independent pathway employing the signaling components TLR3-TRAF6-TAK1-TAB2-PKR
    Jiang, ZF
    Zamanian-Daryoush, M
    Nie, HQ
    Silva, AM
    Williams, BRG
    Li, XX
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (19) : 16713 - 16719