YEH2/YLR020c encodes a novel steryl ester hydrolase of the yeast Saccharomyces cerevisiae

被引:52
作者
Müllner, H
Deutsch, G
Leitner, E
Ingolic, E
Daum, G
机构
[1] Graz Univ Technol, Inst Biochem, A-8010 Graz, Austria
[2] Graz Univ Technol, Inst Food Chem & Food Technol, A-8010 Graz, Austria
[3] Graz Univ Technol, Res Inst Electron Microscopy, A-8010 Graz, Austria
关键词
D O I
10.1074/jbc.M409914200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Previous work from our laboratory (Zinser, E., Paltauf, F., and Daum, G. (1993) J. Bacteriol. 175, 2853-2858) demonstrated steryl ester hydrolase activity in the plasma membrane of the yeast Saccharomyces cerevisiae. Here, we show that the gene product of YEH2/YLR020c, which is homologous to several known mammalian steryl ester hydrolases, is the enzyme catalyzing this reaction. Deletion of yeast YEH2 led to complete loss of plasma membrane steryl ester hydrolase activity whereas overexpression of the gene resulted in a significant elevation of the activity. Purification of enzymatically active Yeh2p close to homogeneity unambiguously identified this protein as a steryl ester hydrolase and thus as the first enzyme of this kind characterized in S. cerevisiae. In addition to evidence obtained in vitro experiments in vivo contributed to the characterization of this novel enzyme. Sterol analysis of yeh2 Delta unveiled a slightly elevated level of zymosterol suggesting that the esterified form of this sterol precursor is a preferred substrate of Yeh2p. However, in strains bearing hybrid proteins with strongly enhanced Yeh2p activity decreased levels of all steryl esters were observed. Thus, it appears that Yeh2p activity is not restricted to distinct steryl esters but rather has broad substrate specificity. The fact that in a yeh2 Delta deletion strain bulk steryl ester mobilization occurred at a similar rate as in wild type suggested that Yeh2p is not the only steryl ester hydrolase but that other enzymes with overlapping function exist in the yeast.
引用
收藏
页码:13321 / 13328
页数:8
相关论文
共 52 条
[1]  
[Anonymous], P 6 INT C INT SYST M
[2]   YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae [J].
Athenstaedt, K ;
Daum, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (26) :23317-23323
[3]   PHOSPHOLIPIDS IN TISSUES OF EYE .1. ISOLATION CHARACTERIZATION AND QUANTITATIVE ANALYSIS BY 2-DIMENSIONAL THIN-LAYER CHROMATOGRAPHY OF DIACYL AND VINYL-ETHER PHOSPHOLIPIDS [J].
BROEKHUYSE, RM .
BIOCHIMICA ET BIOPHYSICA ACTA, 1968, 152 (02) :307-+
[4]   Mammalian acyl-CoA: cholesterol acyltransferases [J].
Buhman, KF ;
Accad, M ;
Farese, RV .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2000, 1529 (1-3) :142-154
[5]   LIPID SIGNALING ENZYMES AND SURFACE DILUTION KINETICS [J].
CARMAN, GM ;
DEEMS, RA ;
DENNIS, EA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (32) :18711-18714
[6]   Translocation of hormone-sensitive lipase and perilipin upon lipolytic stimulation of rat adipocytes [J].
Clifford, GM ;
Londos, C ;
Kraemer, FB ;
Vernon, RG ;
Yeaman, SJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (07) :5011-5015
[7]   A PROTEIN-KINASE ANTIGENICALLY RELATED TO PP60V-SRC POSSIBLY INVOLVED IN YEAST-CELL CYCLE CONTROL - POSITIVE INVIVO REGULATION BY STEROL [J].
DAHL, C ;
BIEMANN, HP ;
DAHL, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (12) :4012-4016
[8]  
DAUM G, 1982, J BIOL CHEM, V257, P3028
[9]   MECHANISM OF HORMONE-STIMULATED LIPOLYSIS IN ADIPOCYTES - TRANSLOCATION OF HORMONE-SENSITIVE LIPASE TO THE LIPID STORAGE DROPLET [J].
EGAN, JJ ;
GREENBERG, AS ;
CHANG, MK ;
WEK, SA ;
MOOS, MC ;
LONDOS, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (18) :8537-8541
[10]  
FOLCH J, 1957, J BIOL CHEM, V226, P497