How protein thermodynamics and folding mechanisms are altered by the chaperonin cage: Molecular simulations

被引:178
作者
Takagi, F [1 ]
Koga, N [1 ]
Takada, S [1 ]
机构
[1] Kobe Univ, Dept Chem, Fac Sci, Kobe, Hyogo 6578501, Japan
关键词
D O I
10.1073/pnas.1831920100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
How the Escherichia coli GroEL/ES chaperonin assists folding of a substrate protein remains to be uncovered. Recently, it was suggested that confinement into the chaperonin cage itself can significantly accelerate folding of a substrate. Performing comprehensive molecular simulations of eight proteins confined into various sizes L of chaperonin-like cage, we explore how and to what extent protein thermodynamics and folding mechanisms are altered by the cage. We show that a substrate protein is remarkably stabilized by confinement; the estimated increase in denaturation temperature DeltaT(f) is as large as approximate to60degreesC. For a protein of size R-0, the stabilization DeltaT(f) scales as (R-0/L)(nu), where nu approximate to 3, which is consistent with a mean field theory of polymer. We also found significant free energy cost of confining a protein, which increases with R-0/L, indicating that the confinement requires external work provided by the chaperonin system. In kinetic study, we show the folding is accelerated in a modestly well confined case, which is consistent with a recent experimental result on ribulose-1,5-bisphosphate carboxylase-oxygenase folding and simulation results of a beta hairpin. Interestingly, the acceleration of folding is likely to be larger for a protein with more complex topology, as quantified by the contact order. We also show how ensemble of folding pathways are altered by the chaperonin-like cage calculating a variant of phi value used in the study of spontaneous folding.
引用
收藏
页码:11367 / 11372
页数:6
相关论文
共 39 条
[1]   Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity [J].
Betancourt, MR ;
Thirumalai, D .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 287 (03) :627-644
[2]   THE CRYSTAL-STRUCTURE OF THE BACTERIAL CHAPERONIN GROEL AT 2.8-ANGSTROM [J].
BRAIG, K ;
OTWINOWSKI, Z ;
HEGDE, R ;
BOISVERT, DC ;
JOACHIMIAK, A ;
HORWICH, AL ;
SIGLER, PB .
NATURE, 1994, 371 (6498) :578-586
[3]   Dual function of protein confinement in chaperonin-assisted protein folding [J].
Brinker, A ;
Pfeifer, G ;
Kerner, MJ ;
Naylor, DJ ;
Hartl, FU ;
Hayer-Hartl, M .
CELL, 2001, 107 (02) :223-233
[4]   FUNNELS, PATHWAYS, AND THE ENERGY LANDSCAPE OF PROTEIN-FOLDING - A SYNTHESIS [J].
BRYNGELSON, JD ;
ONUCHIC, JN ;
SOCCI, ND ;
WOLYNES, PG .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1995, 21 (03) :167-195
[5]   SPIN-GLASSES AND THE STATISTICAL-MECHANICS OF PROTEIN FOLDING [J].
BRYNGELSON, JD ;
WOLYNES, PG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (21) :7524-7528
[6]   GroEL recognises sequential and non-sequential linear structural motifs compatible with extended β-strands and α-helices [J].
Chatellier, J ;
Buckle, AM ;
Fersht, AR .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 292 (01) :163-172
[7]   Topological and energetic factors: What determines the structural details of the transition state ensemble and "en-route" intermediates for protein folding? An investigation for small globular proteins [J].
Clementi, C ;
Nymeyer, H ;
Onuchic, JN .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 298 (05) :937-953
[8]   How native-state topology affects the folding of dihydrofolate reductase and interleukin-1β [J].
Clementi, C ;
Jennings, PA ;
Onuchic, JN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (11) :5871-5876
[9]  
de Gennes P.G., 1979, SCALING CONCEPTS POL
[10]   Molecular confinement influences protein structure and enhances thermal protein stability [J].
Eggers, DK ;
Valentine, JS .
PROTEIN SCIENCE, 2001, 10 (02) :250-261