Molecular cloning, characterization and regulation by cadmium of a superoxide dismutase from the ectomycorrhizal fungus Paxillus involutus

被引:58
作者
Jacob, C
Courbot, M
Brun, A
Steinman, HM
Jacquot, JP
Botton, B
Chalot, M [1 ]
机构
[1] Univ Nancy 1, Fac Sci, UMR INRA UHP Interact Arbres Microorganismes 1136, F-54506 Vandoeuvre Nancy, France
[2] Albert Einstein Coll Med, Dept Biochem, Bronx, NY 10467 USA
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 2001年 / 268卷 / 11期
关键词
cadmium; complementation; expression analysis; Paxillus involutus; superoxide dismutase;
D O I
10.1046/j.1432-1327.2001.02216.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The gene encoding a superoxide dismutase (PiSOD) was cloned by suppressive subtractive hybridization from cDNA library of the ectomycorrhizal fungus, Paxillus involutus, grown under cadmium-stress conditions. The encoded protein was presumed to be localized in the peroxisomes because it contained a C-terminal peroxisomal localization peptide (SKL) and lacked an N-terminal mitochondrial transit peptide. Complementation of an Escherichia coli SOD null strain that is unable to grow in the presence of paraquat or cadmium indicated that cloned Pisod encoded a functional superoxide dismutase. Sensitivity of PiSOD activity to H2O2 but not KCN, and sequence homologies to other SODs strongly suggest that it is a manganese-containing superoxide dismutase. Monitoring PiSOD transcript, immunoreactive polypeptide and superoxide dismutase activity following cadmium stress suggests that the principal level of control is post-translational. This is, to our knowledge, the first insight in the characterization of molecular events that take place in an ectomycorrhizal fungus during exposure to heavy metals.
引用
收藏
页码:3223 / 3232
页数:10
相关论文
共 64 条
[1]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[2]   Overexpression of iron superoxide dismutase in transformed poplar modifies the regulation of photosynthesis at low CO2 partial pressures or following exposure to the prooxidant herbicide methyl viologen [J].
Arisi, ACM ;
Cornic, G ;
Jouanin, L ;
Foyer, CH .
PLANT PHYSIOLOGY, 1998, 117 (02) :565-574
[3]   SEQUENCES IMPORTANT FOR GENE-EXPRESSION IN FILAMENTOUS FUNGI [J].
BALLANCE, DJ .
YEAST, 1986, 2 (04) :229-236
[4]  
BANNISTER JV, 1987, CRIT REV BIOCH, V2, P111
[5]   ISOLATION AND CHARACTERIZATION OF THE CYTOSOLIC AND MITOCHONDRIAL SUPEROXIDE DISMUTASES OF MAIZE [J].
BAUM, JA ;
SCANDALIOS, JG .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1981, 206 (02) :249-264
[6]   SUPEROXIDE DISMUTASE - IMPROVED ASSAYS AND AN ASSAY APPLICABLE TO ACRYLAMIDE GELS [J].
BEAUCHAM.C ;
FRIDOVIC.I .
ANALYTICAL BIOCHEMISTRY, 1971, 44 (01) :276-&
[7]   Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus [J].
Blaudez, D ;
Botton, B ;
Chalot, M .
MICROBIOLOGY-SGM, 2000, 146 :1109-1117
[8]   Differential responses of ectomycorrhizal fungi to heavy metals in vitro [J].
Blaudez, D ;
Jacob, C ;
Turnau, K ;
Colpaert, JV ;
Ahonen-Jonnarth, U ;
Finlay, R ;
Botton, B ;
Chalot, M .
MYCOLOGICAL RESEARCH, 2000, 104 :1366-1371
[9]   SUPEROXIDE-DISMUTASE AND STRESS TOLERANCE [J].
BOWLER, C ;
VANMONTAGU, M ;
INZE, D .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1992, 43 :83-116
[10]   THE INDUCTION OF MANGANESE SUPEROXIDE-DISMUTASE IN RESPONSE TO STRESS IN NICOTIANA-PLUMBAGINIFOLIA [J].
BOWLER, C ;
ALLIOTTE, T ;
DELOOSE, M ;
VANMONTAGU, M ;
INZE, D .
EMBO JOURNAL, 1989, 8 (01) :31-38