Activation of the BK (SLO1) potassium channel by mallotoxin

被引:61
作者
Zakharov, SI
Morrow, JP
Liu, GX
Yang, L
Marx, SO
机构
[1] Columbia Univ, Coll Phys & Surg, New York, NY 10032 USA
[2] Dept Med, Div Cardiol, New York, NY 10029 USA
[3] Ctr Mol Cardiol, New York, NY 10029 USA
关键词
D O I
10.1074/jbc.M505302200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pharmacologic approaches to activate K+ channels represent an emerging strategy to regulate membrane excitability. Here we report the identification and characterization of a lipid soluble toxin, mallotoxin (rottlerin), which potently activates the large conductance voltage and Ca2+-activated K+ channel (BK) expressed in a heterologous expression system and human vascular smooth muscle cells, shifting the conductance/voltage relationship by >100 mV. Probing the mechanism of action, we discover that the BK channel can be activated in the absence of divalent cations (Ca2+, Mg2+), suggesting that the mallotoxin mechanism of action involves the voltage-dependent gating of the channel. Mallo-toxin-activated channels remain incrementally sensitive to Ca2+ and beta subunits. In comparison to other small hydrophobic poisons, anesthetic agents, and protein toxins that inhibit ion channel activity, mallotoxin potently activates channel activity. In certain respects, mallotoxin acts as a BK channel beta 1 subunit mimetic, preserving BK channel Ca2+ sensitivity yet adjusting the set-point for BK channel activation to a more hyperpolarized membrane potential.
引用
收藏
页码:30882 / 30887
页数:6
相关论文
共 40 条
[1]   CALCIUM-ACTIVATED POTASSIUM CHANNELS EXPRESSED FROM CLONED COMPLEMENTARY DNAS [J].
ADELMAN, JP ;
SHEN, KZ ;
KAVANAUGH, MP ;
WARREN, RA ;
WU, YN ;
LAGRUTTA, A ;
BOND, CT ;
NORTH, RA .
NEURON, 1992, 9 (02) :209-216
[2]   Modulation of the molecular composition of large conductance, Ca2+activated K+ channels in vascular smooth muscle during hypertension [J].
Amberg, GC ;
Bonev, AD ;
Rossow, CF ;
Nelson, MT ;
Santana, LF .
JOURNAL OF CLINICAL INVESTIGATION, 2003, 112 (05) :717-724
[3]  
ANDERSON A, 1855, EDINBURGH NEW PHILOS, V1, P296
[4]   A COMPONENT OF CALCIUM-ACTIVATED POTASSIUM CHANNELS ENCODED BY THE DROSOPHILA-SLO LOCUS [J].
ATKINSON, NS ;
ROBERTSON, GA ;
GANETZKY, B .
SCIENCE, 1991, 253 (5019) :551-555
[5]   Cloning and functional characterization of novel large conductance calcium-activated potassium channel β subunits, hKCNMB3 and hKCNMB4 [J].
Brenner, R ;
Jegla, TJ ;
Wickenden, A ;
Liu, Y ;
Aldrich, RW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (09) :6453-6461
[6]   MSLO, A COMPLEX MOUSE GENE ENCODING MAXI CALCIUM-ACTIVATED POTASSIUM CHANNELS [J].
BUTLER, A ;
TSUNODA, S ;
MCCOBB, DP ;
WEI, A ;
SALKOFF, L .
SCIENCE, 1993, 261 (5118) :221-224
[7]   Voltage sensor-trapping:: Enhanced activation of sodium channels by β-scorpion toxin bound to the S3-S4 loop in domain II [J].
Cestèle, S ;
Qu, YS ;
Rogers, JC ;
Rochat, H ;
Scheuer, T ;
Catterall, WA .
NEURON, 1998, 21 (04) :919-931
[8]   A central role of the BK potassium channel in behavioral responses to ethanol in C-elegans [J].
Davies, AG ;
Pierce-Shimomura, JT ;
Kim, H ;
VanHoven, MK ;
Thiele, TR ;
Bonci, A ;
Bargmann, CI ;
McIntire, SL .
CELL, 2003, 115 (06) :655-666
[9]   Specificity and mechanism of action of some commonly used protein kinase inhibitors [J].
Davies, SP ;
Reddy, H ;
Caivano, M ;
Cohen, P .
BIOCHEMICAL JOURNAL, 2000, 351 (351) :95-105
[10]  
Dworetzky SI, 1996, J NEUROSCI, V16, P4543