State-feedback H∞ control of nonlinear singularly perturbed systems

被引:37
作者
Fridman, E [1 ]
机构
[1] Tel Aviv Univ, Dept Elect Engn Syst, IL-69978 Tel Aviv, Israel
关键词
H-infinity control; nonlinear systems; singular perturbations; descriptor systems;
D O I
10.1002/rnc.586
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the H-infinity control problem for an affine singularly perturbed system, which is nonlinear in the state variables. Under suitable assumptions on the linearized problem, we construct epsilon -independent composite and linear controllers that solve the local H-infinity control problem for the full-order system for all small enough epsilon. These controllers solve also the corresponding problem for the descriptor system. The 'central' nonlinear controller can be approximated in the form of expansions in the powers of epsilon. An illustrative example shows that the higher-order approximate controller achieves the better performance, while the composite (zero-order approximate) controller leads to the better performance than the linear one. Copyright (c) 2001 John Wiley & Sons, Ltd.
引用
收藏
页码:1115 / 1125
页数:11
相关论文
共 13 条
[1]   ASYMPTOTIC EXPANSIONS FOR GAME-THEORETIC RICCATI-EQUATIONS AND STABILIZATION WITH DISTURBANCE ATTENUATION FOR SINGULARLY PERTURBED SYSTEMS [J].
DRAGAN, V .
SYSTEMS & CONTROL LETTERS, 1993, 20 (06) :455-463
[2]  
Fridman E, 1995, ANN INT SOC DYN GAME, V3, P25
[3]   A descriptor system approach to nonlinear singularly perturbed optimal control problem [J].
Fridman, E .
AUTOMATICA, 2001, 37 (04) :543-549
[4]   Exact slow-fast decomposition of the nonlinear singularly perturbed optimal control problem [J].
Fridman, E .
SYSTEMS & CONTROL LETTERS, 2000, 40 (02) :121-131
[5]   DISTURBANCE ATTENUATION AND H-INFINITY-CONTROL VIA MEASUREMENT FEEDBACK IN NONLINEAR-SYSTEMS [J].
ISIDORI, A ;
ASTOLFI, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (09) :1283-1293
[6]   STABLE CENTER-STABLE CENTER CENTER-UNSTABLE UNSTABLE MANIFOLDS [J].
KELLEY, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1967, 3 (04) :546-&
[7]   OPTIMAL REGULATION OF NONLINEAR DYNAMICAL SYSTEMS [J].
LUKES, DL .
SIAM JOURNAL ON CONTROL, 1969, 7 (01) :75-&
[8]  
Pan ZG, 1996, INT J ROBUST NONLIN, V6, P585, DOI 10.1002/(SICI)1099-1239(199608)6:7<585::AID-RNC167>3.0.CO
[9]  
2-2
[10]   H∞ control for singularly perturbed systems [J].
Tan, W ;
Leung, TP ;
Tu, QL .
AUTOMATICA, 1998, 34 (02) :255-260