CO2 loss by permafrost thawing implies additional emissions reductions to limit warming to 1.5 or 2 °C

被引:22
作者
Burke, Eleanor J. [1 ]
Chadburn, Sarah E. [2 ]
Huntingford, Chris [3 ]
Jones, Chris D. [1 ]
机构
[1] Hadley Ctr, Met Off, FitzRoy Rd, Exeter EX1 3PB, Devon, England
[2] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England
[3] Ctr Ecol & Hydrol, Wallingford OX10 8BB, Oxon, England
来源
ENVIRONMENTAL RESEARCH LETTERS | 2018年 / 13卷 / 02期
关键词
permafrost; carbon budget; carbon; climate model; feedback; ENVIRONMENT SIMULATOR JULES; CLIMATE-CHANGE; MODEL DESCRIPTION; CARBON FLUXES; ANALOG MODEL; REPRESENTATION; UNCERTAINTIES; SCENARIOS; DYNAMICS;
D O I
10.1088/1748-9326/aaa138
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Large amounts of carbon are stored in the permafrost of the northern high latitude land. As permafrost degrades under a warming climate, some of this carbon will decompose and be released to the atmosphere. This positive climate-carbon feedback will reduce the natural carbon sinks and thus lower anthropogenic CO2 emissions compatible with the goals of the Paris Agreement. Simulations using an ensemble of the JULES-IMOGEN intermediate complexity climate model (including climate response and process uncertainty) and a stabilization target of 2 degrees C, show that including the permafrost carbon pool in the model increases the land carbon emissions at stabilization by between 0.09 and 0.19 Gt C year-1 (10th to 90th percentile). These emissions are only slightly reduced to between 0.08 and 0.16 Gt Cyear(-1) (10th to 90th percentile) when considering 1.5 degrees C stabilization targets. This suggests that uncertainties caused by the differences in stabilization target are small compared with those associated with model parameterisation uncertainty. Inertia means that permafrost carbon loss may continue for many years after anthropogenic emissions have stabilized. Simulations suggest that between 225 and 345GtC (10th to 90th percentile) are in thawed permafrost and may eventually be released to the atmosphere for stabilization target of 2 degrees C. This value is 60-100 GtC less for a 1.5 degrees C target. The inclusion of permafrost carbon will add to the demands on negative emission technologies which are already present in most low emissions scenarios.
引用
收藏
页数:9
相关论文
共 30 条
[1]   The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes [J].
Best, M. J. ;
Pryor, M. ;
Clark, D. B. ;
Rooney, G. G. ;
Essery, R. L. H. ;
Menard, C. B. ;
Edwards, J. M. ;
Hendry, M. A. ;
Porson, A. ;
Gedney, N. ;
Mercado, L. M. ;
Sitch, S. ;
Blyth, E. ;
Boucher, O. ;
Cox, P. M. ;
Grimmond, C. S. B. ;
Harding, R. J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (03) :677-699
[2]   Uncertainties in the global temperature change caused by carbon release from permafrost thawing [J].
Burke, E. J. ;
Hartley, I. P. ;
Jones, C. D. .
CRYOSPHERE, 2012, 6 (05) :1063-1076
[3]   Quantifying uncertainties of permafrost carbon-climate feedbacks [J].
Burke, Eleanor J. ;
Ekici, Altug ;
Huang, Ye ;
Chadburn, Sarah E. ;
Huntingford, Chris ;
Ciais, Philippe ;
Friedlingstein, Pierre ;
Peng, Shushi ;
Krinner, Gerhard .
BIOGEOSCIENCES, 2017, 14 (12) :3051-3066
[4]   A vertical representation of soil carbon in the JULES land surface scheme (vn4.3_permafrost) with a focus on permafrost regions [J].
Burke, Eleanor J. ;
Chadburn, Sarah E. ;
Ekici, Altug .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (02) :959-975
[5]   Estimating the Permafrost-Carbon Climate Response in the CMIP5 Climate Models Using a Simplified Approach [J].
Burke, Eleanor J. ;
Jones, Chris D. ;
Koven, Charles D. .
JOURNAL OF CLIMATE, 2013, 26 (14) :4897-4909
[6]   An improved representation of physical permafrost dynamics in the JULES land-surface model [J].
Chadburn, S. ;
Burke, E. ;
Essery, R. ;
Boike, J. ;
Langer, M. ;
Heikenfeld, M. ;
Cox, P. ;
Friedlingstein, P. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2015, 8 (05) :1493-1508
[7]  
Chadburn SE, 2017, NAT CLIM CHANGE, V7, P340, DOI [10.1038/nclimate3262, 10.1038/NCLIMATE3262]
[8]   Impact of model developments on present and future simulations of permafrost in a global land-surface model [J].
Chadburn, S. E. ;
Burke, E. J. ;
Essery, R. L. H. ;
Boike, J. ;
Langer, M. ;
Heikenfeld, M. ;
Cox, P. M. ;
Friedlingstein, P. .
CRYOSPHERE, 2015, 9 (04) :1505-1521
[9]   The Joint UK Land Environment Simulator (JULES), model description - Part 2: Carbon fluxes and vegetation dynamics [J].
Clark, D. B. ;
Mercado, L. M. ;
Sitch, S. ;
Jones, C. D. ;
Gedney, N. ;
Best, M. J. ;
Pryor, M. ;
Rooney, G. G. ;
Essery, R. L. H. ;
Blyth, E. ;
Boucher, O. ;
Harding, R. J. ;
Huntingford, C. ;
Cox, P. M. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (03) :701-722
[10]   Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century [J].
He, Yujie ;
Trumbore, Susan E. ;
Torn, Margaret S. ;
Harden, Jennifer W. ;
Vaughn, Lydia J. S. ;
Allison, Steven D. ;
Randerson, James T. .
SCIENCE, 2016, 353 (6306) :1419-1424