Ligand-dependent responses of the ErbB signaling network: experimental and modeling analyses

被引:168
作者
Birtwistle, Marc R. [1 ,2 ]
Hatakeyama, Mariko [3 ]
Yumoto, Noriko [3 ]
Ogunnaike, Babatunde A. [2 ]
Hoek, Jan B. [1 ]
Kholodenko, Boris N. [1 ]
机构
[1] Thomas Jefferson Univ, Dept Pathol Anat & Cell Biol, Philadelphia, PA 19107 USA
[2] Univ Delaware, Dept Chem Engn, Newark, DE USA
[3] RIKEN, Genom Sci Ctr, Computat & Expt Syst Biol Grp, Yokohama, Kanagawa, Japan
关键词
breast cancer; kinetic analysis; mathematical modeling; receptor tyrosine kinases;
D O I
10.1038/msb4100188
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Deregulation of ErbB signaling plays a key role in the progression of multiple human cancers. To help understand ErbB signaling quantitatively, in this work we combine traditional experiments with computational modeling, building a model that describes how stimulation of all four ErbB receptors with epidermal growth factor (EGF) and heregulin (HRG) leads to activation of two critical downstream proteins, extracellular-signal-regulated kinase (ERK) and Akt. Model analysis and experimental validation show that (i) ErbB2 overexpression, which occurs in approximately 25% of all breast cancers, transforms transient EGF-induced signaling into sustained signaling, (ii) HRG-induced ERK activity is much more robust to the ERK cascade inhibitor U0126 than EGF-induced ERK activity, and (iii) phosphoinositol-3 kinase is a major regulator of post-peak but not pre-peak EGF-induced ERK activity. Sensitivity analysis leads to the hypothesis that ERK activation is robust to parameter perturbation at high ligand doses, while Akt activation is not.
引用
收藏
页数:16
相关论文
共 51 条
[1]   Monoclonal antibody therapy of cancer [J].
Adams, GP ;
Weiner, LM .
NATURE BIOTECHNOLOGY, 2005, 23 (09) :1147-1157
[2]   Molecular mechanism for a role of SHP2 in epidermal growth factor receptor signaling [J].
Agazie, YM ;
Hayman, MJ .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (21) :7875-7886
[3]  
Baulida J, 1996, J BIOL CHEM, V271, P5251
[4]   ErbB3/HER3 does not homodimerize upon neuregulin binding at the cell surface [J].
Berger, MB ;
Mendrola, JM ;
Lemmon, MA .
FEBS LETTERS, 2004, 569 (1-3) :332-336
[5]   A network model of early events in epidermal growth factor receptor signaling that accounts for combinatorial complexity [J].
Blinov, ML ;
Faeder, JR ;
Goldstein, B ;
Hlavacek, WS .
BIOSYSTEMS, 2006, 83 (2-3) :136-151
[6]   The dual specificity mitogen-activated protein kinase phosphatase-1 and -2 are induced by the p42/p44(MAPK) cascade [J].
Brondello, JM ;
Brunet, A ;
Pouyssegur, J ;
McKenzie, FR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (02) :1368-1376
[7]   Spatial gradients of cellular phospho-proteins [J].
Brown, GC ;
Kholodenko, BN .
FEBS LETTERS, 1999, 457 (03) :452-454
[8]   Dimerization of the p185(neu) transmembrane domain is necessary but not sufficient for transformation [J].
Burke, CL ;
Lemmon, MA ;
Coren, BA ;
Engelman, DM ;
Stern, DF .
ONCOGENE, 1997, 14 (06) :687-696
[9]   SOS phosphorylation and disassociation of the Grb2-SOS complex by the ERK and JNK signaling pathways [J].
Chen, D ;
Waters, SB ;
Holt, KH ;
Pessin, JE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (11) :6328-6332
[10]   The deaf and the dumb: the biology of ErbB-2 and ErbB-3 [J].
Citri, A ;
Skaria, KB ;
Yarden, Y .
EXPERIMENTAL CELL RESEARCH, 2003, 284 (01) :54-65