Capacitive Energy Storage from -50 to 100 °C Using an Ionic Liquid Electrolyte

被引:336
作者
Lin, Rongying [1 ,2 ]
Taberna, Pierre-Louis [1 ]
Fantini, Sebastien [2 ]
Presser, Volker [3 ,4 ]
Perez, Carlos R. [3 ,4 ]
Malbosc, Francois [2 ]
Rupesinghe, Nalin L. [5 ]
Teo, Kenneth B. K. [5 ]
Gogotsi, Yury [3 ,4 ]
Simon, Patrice [1 ]
机构
[1] Univ Toulouse 3, F-31062 Toulouse, France
[2] SOLVIONIC Co, Toulouse, France
[3] Drexel Univ, AJ Drexel Nanotechnol Inst, Philadelphia, PA 19104 USA
[4] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[5] AIXTRON, Cambridge, England
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2011年 / 2卷 / 19期
基金
美国国家科学基金会;
关键词
ELECTRICAL DOUBLE-LAYER; CARBON NANOTUBES; ELECTROCHEMICAL CAPACITORS; MATERIALS SCIENCE; MELTING BEHAVIOR; SUPERCAPACITORS; PERFORMANCE; SUBSTRATE; GROWTH; FILMS;
D O I
10.1021/jz201065t
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Relying on redox reactions, most batteries are limited in their ability to operate at very low or very high temperatures. While performance of electrochemical capacitors is less dependent on the temperature, present-day devices still cannot cover the entire range needed for automotive and electronics applications under a variety of environmental conditions. We show that the right combination of the exohedral nanostructured carbon (nanotubes and onions) electrode and a eutectic mixture of ionic liquids can dramatically extend the temperature range of electrical energy storage, thus defying the conventional wisdom that ionic liquids can only be used as electrolytes above room temperature. We demonstrate electrical double layer capacitors able to operate from -50 to 100 degrees C over a wide voltage window (up to 3.7 V) and at very high charge/discharge rates of up to 20 V/s. SECTION: Energy Conversion and Storage
引用
收藏
页码:2396 / 2401
页数:6
相关论文
共 45 条
[1]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[2]   Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes [J].
Arbizzani, Catia ;
Biso, Maurizio ;
Cericola, Dario ;
Lazzari, Mariachiara ;
Soavi, Francesca ;
Mastragostino, Marina .
JOURNAL OF POWER SOURCES, 2008, 185 (02) :1575-1579
[3]   INNER AND OUTER ACTIVE SURFACE OF RUO2 ELECTRODES [J].
ARDIZZONE, S ;
FREGONARA, G ;
TRASATTI, S .
ELECTROCHIMICA ACTA, 1990, 35 (01) :263-267
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]  
Armand M, 2009, NAT MATER, V8, P621, DOI [10.1038/NMAT2448, 10.1038/nmat2448]
[6]   High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte [J].
Balducci, A. ;
Dugas, R. ;
Taberna, P. L. ;
Simon, P. ;
Plee, D. ;
Mastragostino, M. ;
Passerini, S. .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :922-927
[7]  
Brandon E., 2008, NASA TECH BRIEFS, V32, P32
[8]  
Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/NMAT2612, 10.1038/nmat2612]
[9]   Ultracapacitors: why, how, and where is the technology [J].
Burke, A .
JOURNAL OF POWER SOURCES, 2000, 91 (01) :37-50
[10]   Titanium carbide derived nanoporous carbon for energy-related applications [J].
Dash, Ranjan ;
Chmiola, John ;
Yushin, Gleb ;
Gogotsi, Yury ;
Laudisio, Giovanna ;
Singer, Jonathan ;
Fischer, John ;
Kucheyev, Sergei .
CARBON, 2006, 44 (12) :2489-2497