The blown sand flux over a sandy surface: a wind tunnel investigation on the fetch effect

被引:102
作者
Dong, ZB
Wang, HT
Liu, XP
Wang, XM
机构
[1] Lab.Blown Sand Phys./Desert Envrn., Shapotou Desert Exp. Res. Stn., Cold/AridReg.Environ./Eng.Res.Inst.
基金
中国国家自然科学基金;
关键词
aeolian transport; fetch effect; flux profile; transport equation;
D O I
10.1016/S0169-555X(03)00087-4
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Detailed wind tunnel tests were conducted to examine the fetch effect of a sandy surface on a sand cloud blowing over it. The results suggest that the fetch length of a sandy surface has a significant effect on both the vertical flux profile and total horizontal flux. The sand flux over a sandy surface increases with height in the very near surface layer, but then decays exponentially. In agreement with the widely accepted conclusion, the decay function can be expressed by q = aexp(-h/b), where q is the sand flux at height h. Coefficient a that tends to increase with wind speed implies the influence of wind, while coefficient b that defines the relative decay rate shows the influence of both the fetch and wind. The relative decay rate increases with fetch when the fetch length is short, then becomes constant when the fetch reaches a certain length. The threshold fetch length over which the relative decay rate keeps constant increases with wind speed. The average saltation height generally increases with fetch. Both the relative decay rate and average saltation height show that the fetch effect on the flux profile becomes more significant when the wind speed increases. The total sand transport equation for the total fetch can be expressed by Q = C(1 - U-t/U)U-2(3)(rho/g), where Q is the total sand transport rate, U and Ut are the wind velocity and threshold wind velocity at the centerline height of the wind tunnel, respectively, g is gravitational acceleration, p is the density of air, and C is a proportionality coefficient that increases with the fetch length, implying that the total sand flux increases with the fetch length. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:117 / 127
页数:11
相关论文
共 27 条
  • [1] ANDERSON RS, 1986, GEOL SOC AM BULL, V97, P523, DOI 10.1130/0016-7606(1986)97<523:STBWTA>2.0.CO
  • [2] 2
  • [3] Anderson RS, 1991, ACTA MECHANICA S, V1, P21, DOI DOI 10.1007/978-3-7091-6706-9_
  • [4] BAGNOLD RA, 1941, PHYSICS BLOWN SAND D
  • [5] Chen WN, 1996, PHYS GEOGR, V17, P193
  • [6] CHEPIL W. S., 1939, SCI AGRIC [OTTAWA], V19, P249
  • [7] Aerodynamic roughness of gravel surfaces
    Dong, ZB
    Liu, XP
    Wang, XM
    [J]. GEOMORPHOLOGY, 2002, 43 (1-2) : 17 - 31
  • [8] Velocity profile of a sand cloud blowing over a gravel surface
    Dong, ZB
    Wang, HT
    Liu, XP
    Li, F
    Zhao, AG
    [J]. GEOMORPHOLOGY, 2002, 45 (3-4) : 277 - 289
  • [9] Impact-entrainment relationship in a saltating cloud
    Dong, ZB
    Liu, XP
    Li, F
    Wang, HT
    Zhao, AG
    [J]. EARTH SURFACE PROCESSES AND LANDFORMS, 2002, 27 (06) : 641 - 658
  • [10] Gillette DA, 1996, EARTH SURF PROCESSES, V21, P641, DOI 10.1002/(SICI)1096-9837(199607)21:7&lt