2D Cooling of magnetized neutron stars

被引:158
作者
Aguilera, D. N. [1 ,2 ]
Pons, J. A. [1 ]
Miralles, J. A. [1 ]
机构
[1] Univ Alicante, Dept Appl Phys, E-03080 Alicante, Spain
[2] Natl Council Atom Energy CNEA CONICET, Tandar Lab, RA-1650 Buenos Aires, DF, Argentina
关键词
stars : neutron; stars : magnetic fields; radiation mechanisms : thermal;
D O I
10.1051/0004-6361:20078786
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Many thermally emitting, isolated neutron stars have magnetic fields that are larger than 1013 G. A realistic cooling model that includes the presence of high magnetic fields should be reconsidered. Aims. We investigate the effects of an anisotropic temperature distribution and Joule heating on the cooling of magnetized neutron stars. Methods. The 2D heat transfer equation with anisotropic thermal conductivity tensor and including all relevant neutrino emission processes is solved for realistic models of the neutron star interior and crust. Results. The presence of the magnetic field affects significantly the thermal surface distribution and the cooling history during both, the early neutrino cooling era and the late photon cooling era. Conclusions. There is a large effect of Joule heating on the thermal evolution of strongly magnetized neutron stars. Both magnetic fields and Joule heating play an important role in keeping magnetars warm for a long time. Moreover, this effect is important for intermediate field neutron stars and should be considered in radio-quiet isolated neutron stars or high magnetic field radio-pulsars.
引用
收藏
页码:255 / 271
页数:17
相关论文
共 69 条
[1]   The impact of magnetic field on the thermal evolution of neutron stars [J].
Aguilera, Deborah N. ;
Pons, Jose A. ;
Miralles, Juan A. .
ASTROPHYSICAL JOURNAL LETTERS, 2008, 673 (02) :L167-L170
[2]  
AMUNDSEN L, 1985, NUCL PHYS A, V437, P487, DOI 10.1016/0375-9474(85)90103-4
[3]   How viscous is a superfluid neutron star core? [J].
Andersson, N ;
Comer, GL ;
Glampedakis, K .
NUCLEAR PHYSICS A, 2005, 763 :212-229
[4]   Thermal conductivity of neutrons in neutron star cores [J].
Baiko, DA ;
Haensel, P ;
Yakovlev, DG .
ASTRONOMY & ASTROPHYSICS, 2001, 374 (01) :151-163
[5]   SUPERFLUIDITY AND SUPERCONDUCTIVITY IN RELATIVISTIC FERMION SYSTEMS [J].
BAILIN, D ;
LOVE, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 107 (06) :325-385
[6]   3P2-3F2 pairing in neutron matter with modern nucleon-nucleon potentials [J].
Baldo, M ;
Elgaroy, O ;
Engvik, L ;
Hjorth-Jensen, M ;
Schulze, HJ .
PHYSICAL REVIEW C, 1998, 58 (04) :1921-1928
[7]  
Bezchastnov VG, 1997, ASTRON ASTROPHYS, V328, P409
[8]   A fossil origin for the magnetic field in A stars and white dwarfs [J].
Braithwaite, J ;
Spruit, HC .
NATURE, 2004, 431 (7010) :819-821
[9]   TRANSVERSE ELECTRICAL CONDUCTIVITY OF A RELATIVISTIC GAS IN AN INTENSE MAGNETIC FIELD [J].
CANUTO, V ;
CHIUDERI, C .
PHYSICAL REVIEW D, 1970, 1 (08) :2219-&
[10]   NUCLEONIC SUPERFLUIDITY IN NEUTRON-STARS - S-1(0) NEUTRON PAIRING IN THE INNER CRUST [J].
CHEN, JMC ;
CLARK, JW ;
KROTSCHECK, E ;
SMITH, RA .
NUCLEAR PHYSICS A, 1986, 451 (03) :509-540