P19INK4D links endomitotic arrest and megakaryocyte maturation and is regulated by AML-1

被引:48
作者
Gilles, Laure [2 ,3 ]
Guieze, Romain [2 ,3 ]
Bluteau, Dominique [1 ,2 ,4 ]
Cordette-Lagarde, Veronique [1 ,2 ]
Lacout, Catherine [1 ,2 ]
Favier, Remi [1 ,2 ,5 ]
Larbret, Frederic [1 ,2 ]
Debili, Najet [1 ,2 ,4 ]
Vainchenker, William [1 ,2 ,4 ]
Raslova, Hana [1 ,2 ,4 ]
机构
[1] Inst Gustave Roussy, INSERM, U790, IFR54, F-94805 Villejuif, France
[2] Inst Natl Sante & Rech Med, U790, Villejuif, France
[3] Univ Paris 07, Paris, France
[4] Univ Paris 11, Villejuif, France
[5] Hop Trousseau, AP HP, F-75571 Paris, France
关键词
D O I
10.1182/blood-2007-09-113266
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The molecular mechanisms that regulate megakaryocyte (MK) ploidization are poorly understood. Using MK differentiation from primary human CD34(+) cells, we observed that p19(INK4D) expression was increased both at the mRNA and protein levels during ploidization. p19(INK4D) knockdown led to a moderate increase (31.7% +/- 5%) in the mean ploidy of MKs suggesting a role of p19(INK4D) in the endomitotic arrest. This increase in ploidywas associated with a decrease in the more mature MK population (CD41(high)CD42(high)) at day 9 of culture, which was related to a delay in differentiation. Inversely, p19(INK4D) overexpression in CD34+ cells resulted in a decrease in mean ploidy level associated with an increase in CD41 and CD42 expression in each ploidy class. Confirming these in vitro results, bone marrow MKs from p19(INK4D) KO mice exhibited an increase in mean ploidy level from 18.7N (+/- 0.58N) to 52.7N (+/- 12.31N). Chromatin immunoprecipitation assays performed in human MKs revealed that AML-1 binds in vivo the p19(INK4D) promoter. Moreover, AML-11 inhibition led to the p19(INK4D) down-regulation in human MKs. These results may explain the molecular link at the transcriptional level between the arrest of endomitosis and the acceleration of MK differentiation.
引用
收藏
页码:4081 / 4091
页数:11
相关论文
共 47 条
[1]   Lentiviral-mediated RNA interference [J].
Abbas-Terki, T ;
Blanco-Bose, W ;
Déglon, N ;
Pralong, W ;
Aebischer, P .
HUMAN GENE THERAPY, 2002, 13 (18) :2197-2201
[2]  
Adachi M, 1997, BLOOD, V90, P126
[3]   A new generation of pPRIG-based retroviral vectors [J].
Albagli-Curiel, Olivier ;
Lecluse, Yann ;
Pognonec, Philippe ;
Boulukos, Kim E. ;
Martin, Patrick .
BMC BIOTECHNOLOGY, 2007, 7 (1)
[4]  
Baatout S, 1998, HAEMATOLOGIA, V29, P213
[5]   Role of p2lCiP1/Waf1 in cell-cycle exit of endomitotic megakaryocytes [J].
Baccini, V ;
Roy, L ;
Vitrat, N ;
Chagraoui, H ;
Sabri, S ;
Le Couedic, JP ;
Debili, N ;
Wendling, F ;
Vainchenker, W .
BLOOD, 2001, 98 (12) :3274-3282
[6]   A system for stable expression of short interfering RNAs in mammalian cells [J].
Brummelkamp, TR ;
Bernards, R ;
Agami, R .
SCIENCE, 2002, 296 (5567) :550-553
[7]   Progressive hearing loss in mice lacking the cyclin-dependent kinase inhibitor Ink4d [J].
Chen, P ;
Zindy, F ;
Abdala, C ;
Liu, F ;
Li, XK ;
Roussel, MF ;
Segil, N .
NATURE CELL BIOLOGY, 2003, 5 (05) :422-426
[8]   The p21Cip1 and p27Kip1 CDK 'inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts [J].
Cheng, MG ;
Olivier, P ;
Diehl, JA ;
Fero, M ;
Roussel, MF ;
Roberts, JM ;
Sherr, CJ .
EMBO JOURNAL, 1999, 18 (06) :1571-1583
[9]  
CHOI ES, 1995, BLOOD, V85, P402
[10]   The cyclin-dependent kinase inhibitors p19Ink4d and p27Kip1 are coexpressed in select retinal cells and act cooperatively to control cell cycle exit [J].
Cunningham, JJ ;
Levine, EM ;
Zindy, F ;
Goloubeva, O ;
Roussel, MF ;
Smeyne, RJ .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2002, 19 (03) :359-374