Wavelet-based image estimation: An empirical Bayes approach using Jeffreys' noninformative prior

被引:170
作者
Figueiredo, MAT [1 ]
Nowak, RD
机构
[1] Inst Telecomunicacoes, P-1049001 Lisbon, Portugal
[2] Inst Super Tecn, Dept Elect & Comp Engn, P-1049001 Lisbon, Portugal
[3] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77001 USA
基金
美国国家科学基金会;
关键词
Bayesian estimation; empirical Bayes; hierarchical Bayes; image denoising; image estimation; invariance; Jeffreys' priors; noninformative priors; shrinkage; wavelets;
D O I
10.1109/83.941856
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The sparseness and decorrelation properties of the discrete wavelet transform have been exploited to develop powerful denoising methods. However, most of these methods have free parameters which have to be adjusted or estimated. In this paper, we propose a wavelet-based denoising technique without any free parameters; it is, in this sense, a "universal" method. Our approach uses empirical Bayes estimation based on a Jeffreys' noninformative prior; it is a step toward objective Bayesian wavelet-based denoising. The result is a remarkably simple fixed nonlinear shrinkage/thresholding rule which performs better than other more computationally demanding methods.
引用
收藏
页码:1322 / 1331
页数:10
相关论文
共 35 条
[1]   Wavelet thresholding via a Bayesian approach [J].
Abramovich, F ;
Sapatinas, T ;
Silverman, BW .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 :725-749
[2]  
[Anonymous], 1997, ESSENTIAL WAVELETS S, DOI DOI 10.1007/978-1-4612-0709-2
[3]  
[Anonymous], 2021, BAYES IND SAMPL INF
[4]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159
[5]  
Bernardo J.M., 2009, Bayesian Theory, V405
[6]   BETTER SUBSET REGRESSION USING THE NONNEGATIVE GARROTE [J].
BREIMAN, L .
TECHNOMETRICS, 1995, 37 (04) :373-384
[7]  
BRILLINGER DR, 1996, NONPARAMETRIC STAT, V6, P93
[8]   Blind signal separation: Statistical principles [J].
Cardoso, JF .
PROCEEDINGS OF THE IEEE, 1998, 86 (10) :2009-2025
[9]   Adaptive Bayesian wavelet shrinkage [J].
Chipman, HA ;
Kolaczyk, ED ;
McCullogh, RE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) :1413-1421
[10]  
COIFMAN R. R., 1995, Wavelets and statistics, P125, DOI DOI 10.1007/978-1-4612-2544-7_9