Desensitization of capsaicin-activated currents in the vanilloid receptor TRPV1 is decreased by the cyclic AMP-dependent protein kinase pathway

被引:209
作者
Mohapatra, DP [1 ]
Nau, C [1 ]
机构
[1] Univ Erlangen Nurnberg, Dept Anesthesiol, D-91054 Erlangen, Germany
关键词
D O I
10.1074/jbc.M306619200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Proinflammatory prostaglandin E2 is known to sensitize sensory neurons to noxious stimuli. This sensitization is mediated by the cAMP-dependent protein kinase (PKA) signal pathway. The capsaicin receptor TRPV1, a non-selective cation channel of sensory neurons involved in the sensation of inflammatory pain, is a target of PKA-mediated phosphorylation. Our goal was to investigate the influence of PKA on Ca2+-dependent desensitization of capsaicin-activated currents. By using site-directed mutagenesis, we created point mutations at PKA consensus sites and studied wild-type and mutant channels transiently expressed in HEK293t cells under whole-cell voltage clamp. We found that forskolin, a stimulator of adenylate cyclase, decreased desensitization of TRPV1. The selective PKA inhibitor H89 inhibited this effect. Mimicking phosphorylation at PKA consensus sites by replacing Ser-6, Ser-116, Thr-144, Thr-370, Ser-502, Ser-774, or Ser-820 with aspartate resulted in five mutations (S116D, T144D, T370D, S774D, and S820D) that exhibited decreased desensitization as well. However, disrupting phosphorylation by replacing respective sites with alanine resulted in four mutations (S6A, T144A, T370A, and S820A) with desensitization properties resembling those of the aspartate mutations. Significant changes in relative permeabilities for Ca2+ over Na+ or in capsaicin sensitivity could not explain changes in desensitization properties of mutant channels. In mutations S116A, S116D, T370A, and T370D, pretreatment of cells with forskolin did not reduce desensitization as compared with wild-type and other mutant channels. We conclude that Ser-116 and possibly Thr-370 are the most important residues involved in the mechanism of PKA-dependent reduction of desensitization of capsaicin-activated currents.
引用
收藏
页码:50080 / 50090
页数:11
相关论文
共 25 条
[1]   Interactions between multiple phosphorylation sites in the inactivation particle of a K+ channel -: Insights into the molecular mechanism of protein kinase C action [J].
Beck, EJ ;
Sorensen, RG ;
Slater, SJ ;
Covarrubias, M .
JOURNAL OF GENERAL PHYSIOLOGY, 1998, 112 (01) :71-84
[2]   cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation [J].
Bhave, G ;
Zhu, WG ;
Wang, HB ;
Brasier, DJ ;
Oxford, GS ;
Gereau, RW .
NEURON, 2002, 35 (04) :721-731
[3]   Molecular mechanism of convergent regulation of brain Na+ channels by protein kinase C and protein kinase A anchored to AKAP-15 [J].
Cantrell, AR ;
Tibbs, VC ;
Yu, FH ;
Murphy, BJ ;
Sharp, EM ;
Qu, YS ;
Catterall, WA ;
Scheuer, T .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2002, 21 (01) :63-80
[4]   Impaired nociception and pain sensation in mice lacking the capsaicin receptor [J].
Caterina, MJ ;
Leffler, A ;
Malmberg, AB ;
Martin, WJ ;
Trafton, J ;
Petersen-Zeitz, KR ;
Koltzenburg, M ;
Basbaum, AI ;
Julius, D .
SCIENCE, 2000, 288 (5464) :306-313
[5]   The capsaicin receptor: a heat-activated ion channel in the pain pathway [J].
Caterina, MJ ;
Schumacher, MA ;
Tominaga, M ;
Rosen, TA ;
Levine, JD ;
Julius, D .
NATURE, 1997, 389 (6653) :816-824
[6]   Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia [J].
Davis, JB ;
Gray, J ;
Gunthorpe, MJ ;
Hatcher, JP ;
Davey, PT ;
Overend, P ;
Harries, MH ;
Latcham, J ;
Clapham, C ;
Atkinson, K ;
Hughes, SA ;
Rance, K ;
Grau, E ;
Harper, AJ ;
Pugh, PL ;
Rogers, DC ;
Bingham, S ;
Randall, A ;
Sheardown, SA .
NATURE, 2000, 405 (6783) :183-187
[7]   The vanilloid receptor (VR1)-mediated effects of anandamide are potently enhanced by the cAMP-dependent protein kinase [J].
De Petrocellis, L ;
Harrison, S ;
Bisogno, T ;
Tognetto, M ;
Brandi, I ;
Smith, GD ;
Creminon, C ;
Davis, JB ;
Geppetti, P ;
Di Marzo, V .
JOURNAL OF NEUROCHEMISTRY, 2001, 77 (06) :1660-1663
[8]   Inhibition of calcineurin inhibits the desensitization of capsaicin evoked currents in cultured dorsal root ganglion neurones from adult rats [J].
Docherty, RJ ;
Yeats, JC ;
Bevan, S ;
Boddeke, HWGM .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1996, 431 (06) :828-837
[9]   Direct activation of capsaicin receptors by products of lipoxygenases: Endogenous capsaicin-like substances [J].
Hwang, SW ;
Cho, H ;
Kwak, J ;
Lee, SY ;
Kang, CJ ;
Jung, J ;
Cho, S ;
Min, KH ;
Suh, YG ;
Kim, D ;
Oh, U .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (11) :6155-6160
[10]   Molecular basis for species-specific sensitivity to "hot" chili peppers [J].
Jordt, SE ;
Julius, D .
CELL, 2002, 108 (03) :421-430