Chaos in the Gylden problem

被引:13
作者
Diacu, F [1 ]
Selaru, D
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
[2] Inst Gravitat & Space Sci, Lab Gravitat, Bucharest, Romania
关键词
D O I
10.1063/1.532663
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Gylden problem-a perturbation of the Kepler problem via an explicit function of time. For certain general classes of planar periodic perturbations, after proving a Poincare'-Melnikov-type criterion, we find a manifold of orbits in which the dynamics is given by the shift automorphism on the set of bi-infinite sequences with infinitely many symbols. We achieve the main result by computing the Melnikov integral explicitly. (C) 1998 American Institute of Physics. [S0022-2488(98)01912-4].
引用
收藏
页码:6537 / 6546
页数:10
相关论文
共 25 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS F
[2]  
ARNOLD VI, 1963, SOV MATH DOKL, V5, P581
[3]  
CUCUDUMITRESCU C, IN PRESS ASTROPHYS S
[4]   THE SECULAR ACCELERATIONS IN GYLDEN PROBLEM [J].
DEPRIT, A .
CELESTIAL MECHANICS, 1983, 31 (01) :1-22
[5]  
Diacu F., 1996, CELESTIAL ENCOUNTERS
[6]  
Guckenheimer J., 1983, NONLINEAR OSCILLATIO
[7]  
Gylden H., 1884, Astron. Nachr., V109, P1
[8]   2-BODY PROBLEM WITH VARIABLE MASS - A NEW APPROACH [J].
HADJIDEMETRIOU, JD .
ICARUS, 1963, 2 (5-6) :440-451
[9]   AVERAGING AND CHAOTIC MOTIONS IN FORCED-OSCILLATIONS [J].
HOLMES, PJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1980, 38 (01) :65-80
[10]   STABLE MANIFOLD THEOREM FOR DEGENERATE FIXED-POINTS WITH APPLICATIONS TO CELESTIAL MECHANICS [J].
MCGEHEE, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1973, 14 (01) :70-88