共 49 条
Dual-domain, dual-targeting organellar protein presequences in Arabidopsis can use non-AUG start codons
被引:103
作者:
Christensen, AC
Lyznik, A
Mohammed, S
Elowsky, CG
Elo, A
Yule, R
Mackenzie, SA
[1
]
机构:
[1] Univ Nebraska, Sch Biol Sci, Beadle Ctr Genet Res, Lincoln, NE 68588 USA
[2] Univ Nebraska, Plant Sci Initiat, Beadle Ctr Genet Res, Lincoln, NE 68588 USA
[3] Univ Nebraska, Ctr Biotechnol, Beadle Ctr Genet Res, Lincoln, NE 68588 USA
来源:
关键词:
D O I:
10.1105/tpc.105.035287
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
The processes accompanying endosymbiosis have led to a complex network of interorganellar protein traffic that originates from nuclear genes encoding mitochondrial and plastid proteins. A significant proportion of nucleus-encoded organellar proteins are dual targeted, and the process by which a protein acquires the capacity for both mitochondrial and plastid targeting may involve intergenic DNA exchange coupled with the incorporation of sequences residing upstream of the gene. We evaluated targeting and sequence alignment features of two organellar DNA polymerase genes from Arabidopsis thaliana. Within one of these two loci, protein targeting appeared to be plastidic when the 59 untranslated leader region (UTR) was deleted and translation could only initiate at the annotated ATG start codon but dual targeted when the 59 UTR was included. Introduction of stop codons at various sites within the putative UTR demonstrated that this region is translated and influences protein targeting capacity. However, no ATG start codon was found within this upstream, translated region, suggesting that translation initiates at a non-ATG start. We identified a CTG codon that likely accounts for much of this initiation. Investigation of the 59 region of other nucleus-encoded organellar genes suggests that several genes may incorporate upstream sequences to influence targeting capacity. We postulate that a combination of intergenic recombination and some relaxation of constraints on translation initiation has acted in the evolution of protein targeting specificity for those proteins capable of functioning in both plastids and mitochondria.
引用
收藏
页码:2805 / 2816
页数:12
相关论文