Exercise induced stress in horses: Selection of the most stable reference genes for quantitative RT-PCR normalization

被引:108
作者
Cappelli, Katia [1 ]
Felicetti, Michela [1 ]
Capomaccio, Stefano [2 ]
Spinsanti, Giacomo [3 ]
Silvestrelli, Maurizio [1 ]
Supplizi, Andrea Verini [1 ]
机构
[1] Univ Perugia, Dept Pathol, Diagnost & Vet Clin, I-06126 Perugia, Italy
[2] Univ Perugia, Dept Appl Biol, I-06100 Perugia, Italy
[3] Univ Siena, Dept Evolutionary Biol, I-53100 Siena, Italy
来源
BMC MOLECULAR BIOLOGY | 2008年 / 9卷
关键词
D O I
10.1186/1471-2199-9-49
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Adequate stress response is a critical factor during athlete horses' training and is central to our capacity to obtain better performances while safeguarding animal welfare. In order to investigate the molecular mechanisms underlying this process, several studies have been conducted that take advantage of microarray and quantitative real-time PCR (qRT-PCR) technologies to analyse the expression of candidate genes involved in the cellular stress response. Appropriate application of qRT-PCR, however, requires the use of reference genes whose level of expression is not affected by the test, by general physiological conditions or by inter-individual variability. Results: The expression of nine potential reference genes was evaluated in lymphocytes of ten endurance horses during strenuous exercise. These genes were tested by qRT-PCR and ranked according to the stability of their expression using three different methods (implemented in geNorm, NormFinder and BestKeeper). Succinate dehydrogenase complex subunit A (SDHA) and hypoxanthine phosphoribosyltransferase (HPRT) always ranked as the two most stably expressed genes. On the other hand, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), transferrin receptor (TFRC) and ribosomal protein L32 (RPL32) were constantly classified as the less reliable controls. Conclusion: This study underlines the importance of a careful selection of reference genes for qRT-PCR studies of exercise induced stress in horses. Our results, based on different algorithms and analytical procedures, clearly indicate SDHA and HPRT as the most stable reference genes of our pool.
引用
收藏
页数:8
相关论文
共 29 条
[1]   Customized molecular phenotyping by quantitative gene expression and pattern recognition analysis [J].
Akilesh, S ;
Shaffer, DJ ;
Roopenian, D .
GENOME RESEARCH, 2003, 13 (07) :1719-1727
[2]   Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets [J].
Andersen, CL ;
Jensen, JL ;
Orntoft, TF .
CANCER RESEARCH, 2004, 64 (15) :5245-5250
[3]   The overtraining syndrome in athletes: A stress-related disorder [J].
Angeli, A ;
Minetto, M ;
Dovio, A ;
Paccotti, P .
JOURNAL OF ENDOCRINOLOGICAL INVESTIGATION, 2004, 27 (06) :603-612
[4]  
AYERS D, 2007, BMC VET RES, P3
[5]  
BANDA M, 2007, MUTATION RES
[6]   GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues [J].
Barber, RD ;
Harmer, DW ;
Coleman, RA ;
Clark, BJ .
PHYSIOLOGICAL GENOMICS, 2005, 21 (03) :389-395
[7]  
BARREY E, 2006, EQUINE VET J S, V36, P43
[8]   Utility of the housekeeping genes 18S rRNA, β-actin and glyceraldehyde-3-phosphate-dehydrogenase for normalization in real-time quantitative reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes [J].
Bas, A ;
Forsberg, G ;
Hammarström, S ;
Hammarström, ML .
SCANDINAVIAN JOURNAL OF IMMUNOLOGY, 2004, 59 (06) :566-573
[9]   Housekeeping gene variability in normal and carcinomatous colorectal and liver tissues: Applications in pharmacogenomic gene expression studies [J].
Blanquicett, C ;
Johnson, MR ;
Heslin, M ;
Diasio, RB .
ANALYTICAL BIOCHEMISTRY, 2002, 303 (02) :209-214
[10]  
BOGAERT L, 2006, BMC BIOTECHNOL, P6