Structure-based method for analyzing protein-protein interfaces

被引:84
作者
Gao, Y
Wang, RX
Lai, LH [1 ]
机构
[1] Peking Univ, Ctr Theoret Biol, Beijing 100871, Peoples R China
[2] Peking Univ, State Key Lab Struct Chem Stable & Unstable Speci, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
关键词
protein-protein interaction; interface analysis; hot spot; correlated mutation; PP_SITE;
D O I
10.1007/s00894-003-0168-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hydrogen bond, hydrophobic and vdW interactions are the three major non-covalent interactions at protein-protein interfaces. We have developed a method that uses only these properties to describe interactions between proteins, which can qualitatively estimate the individual contribution of each interfacial residue to the binding and gives the results in a graphic display way. This method has been applied to analyze alanine mutation data at protein-protein interfaces. A dataset containing 13 protein-protein complexes with 250 alanine mutations of interfacial residues has been tested. For the 75 hot-spot residues (DeltaDeltaGgreater than or equal to1.5 kcal mol(-1)), 66 can be predicted correctly with a success rate of 88%. In order to test the tolerance of this method to conformational changes upon binding, we utilize a set of 26 complexes with one or both of their components available in the unbound form. The difference of key residues exported by the program is 11% between the results using complexed proteins and those from unbound ones. As this method gives the characteristics of the binding partner for a particular protein, in-depth studies on protein-protein recognition can be carried out. Furthermore, this method can be used to compare the difference between protein-protein interactions and look for correlated mutation.
引用
收藏
页码:44 / 54
页数:11
相关论文
共 45 条
[1]   InterPreTS: protein Interaction Prediction through Tertiary Structure [J].
Aloy, P ;
Russell, RB .
BIOINFORMATICS, 2003, 19 (01) :161-162
[2]   Interrogating protein interaction networks through structural biology [J].
Aloy, P ;
Russell, RB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (09) :5896-5901
[3]   An analysis of conformational changes on protein-protein association: implications for predictive docking [J].
Betts, MJ ;
Sternberg, MJE .
PROTEIN ENGINEERING, 1999, 12 (04) :271-283
[4]   Predicting protein-protein interactions from primary structure [J].
Bock, JR ;
Gough, DA .
BIOINFORMATICS, 2001, 17 (05) :455-460
[5]   Anatomy of hot spots in protein interfaces [J].
Bogan, AA ;
Thorn, KS .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 280 (01) :1-9
[6]   Molecular characterization of the hdm2-p53 interaction [J].
Bottger, A ;
Bottger, V ;
GarciaEcheverria, C ;
Chene, P ;
Hochkeppel, HK ;
Sampson, W ;
Ang, K ;
Howard, SF ;
Picksley, SM ;
Lane, DP .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 269 (05) :744-756
[7]   PROTEIN-PROTEIN RECOGNITION - CRYSTAL STRUCTURAL-ANALYSIS OF A BARNASE BARSTAR COMPLEX AT 2.0-ANGSTROM RESOLUTION [J].
BUCKLE, AM ;
SCHREIBER, G ;
FERSHT, AR .
BIOCHEMISTRY, 1994, 33 (30) :8878-8889
[8]   A METHOD TO PREDICT FUNCTIONAL RESIDUES IN PROTEINS [J].
CASARI, G ;
SANDER, C ;
VALENCIA, A .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (02) :171-178
[9]   A HOT-SPOT OF BINDING-ENERGY IN A HORMONE-RECEPTOR INTERFACE [J].
CLACKSON, T ;
WELLS, JA .
SCIENCE, 1995, 267 (5196) :383-386
[10]   Analysis of protein-protein interactions and the effects of amino acid mutations on their energetics. The importance of water molecules in the binding epitope [J].
Covell, DG ;
Wallqvist, A .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 269 (02) :281-297