Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries

被引:105
作者
Wang, Wei
Kumta, Prashant N. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Biomed Engn, Pittsburgh, PA 15213 USA
关键词
carbon nanotube; anode; lithium-ion; mechanical milling;
D O I
10.1016/j.jpowsour.2007.05.025
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanocomposites comprising silicon (Si), graphite (C) and single-walled carbon nanotubes (SWNTs), denoted as Si/C/SWNTs, have been synthesized by dispersing SWNTs via high power ultrasonication into a pre-milled Si/C composite mixture, followed by subsequent thermal treatment. The Si/C composite powder was prepared by high-energy mechanical milling (HEMM) of elemental Si and graphite using polymethacrylonitrile (PMAN) as a diffusion barrier suppressing the possible mechanochemical reaction between silicon and graphite to form SiC, and further prevent the amorphization of graphite during extended milling. A nanocomposite with nominal composition of Si-35 wt.% SWNTs-37 wt.% exhibits a reversible discharge capacity of similar to 900 mAh g(-1) with an excellent capacity retention of capacity loss of 0.3% per cycle up to 30 cycles. Functionalization of the SWNTs with LiOH significantly improves the cyclability of the nanocomposite containing Si-45 wt.% SWNTs-28 wt.% exhibiting a reversible capacity of 1066 mAh g(-1) and displaying almost no fade in capacity up to 30 cycles. The improved electrochemical performance is hypothesized to be attributed to the formation of a nanoscale conductive network by the dispersed SWNTs which leads to successful maintenance of good electrical contact between the electrochemically active particles during cycling. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:650 / 658
页数:9
相关论文
共 44 条
[1]   Single-electrode Peltier heats of Li-Si alloy electrodes in LiCl-KCl eutectic melt [J].
Amezawa, K ;
Yamamoto, N ;
Tomii, Y ;
Ito, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (06) :1986-1993
[2]   On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries [J].
Aurbach, D ;
Markovsky, B ;
Weissman, I ;
Levi, E ;
Ein-Eli, Y .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :67-86
[3]   ALL-SOLID LITHIUM ELECTRODES WITH MIXED-CONDUCTOR MATRIX [J].
BOUKAMP, BA ;
LESH, GC ;
HUGGINS, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (04) :725-729
[4]   The nanocomposites of carbon nanotube with Sb and SnSb0.5 as Li-ion battery anodes [J].
Chen, WX ;
Lee, JY ;
Liu, ZL .
CARBON, 2003, 41 (05) :959-966
[5]   Solid-state electrochemistry of the Li single wall carbon nanotube system [J].
Claye, AS ;
Fischer, JE ;
Huffman, CB ;
Rinzler, AG ;
Smalley, RE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (08) :2845-2852
[6]   Silicon, graphite and resin based hard carbon nanocomposite anodes for lithium ion batteries [J].
Datta, Moni Kanchan ;
Kumta, Prashant N. .
JOURNAL OF POWER SOURCES, 2007, 165 (01) :368-378
[7]   Silicon and carbon based composite anodes for lithium ion batteries [J].
Datta, Moni Kanchan ;
Kumta, Prashant N. .
JOURNAL OF POWER SOURCES, 2006, 158 (01) :557-563
[8]   Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes [J].
Demczyk, BG ;
Wang, YM ;
Cumings, J ;
Hetman, M ;
Han, W ;
Zettl, A ;
Ritchie, RO .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2002, 334 (1-2) :173-178
[9]   Electrochemical insertion of lithium into multiwalled carbon nanotube/silicon composites produced by ballmilling [J].
Eom, J. Y. ;
Park, J. W. ;
Kwon, H. S. ;
Rajendran, S. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (09) :A1678-A1684
[10]   Electrochemical storage of lithium multiwalled carbon nanotubes [J].
Frackowiak, E ;
Gautier, S ;
Gaucher, H ;
Bonnamy, S ;
Beguin, F .
CARBON, 1999, 37 (01) :61-69