RpoS co-operates with other factors to induce Legionella pneumophila virulence in the stationary phase

被引:134
作者
Bachman, MA [1 ]
Swanson, MS [1 ]
机构
[1] Univ Michigan, Sch Med, Dept Microbiol & Immunol, Ann Arbor, MI 48109 USA
关键词
D O I
10.1046/j.1365-2958.2001.02465.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Legionella pneumophila replicates within amoebae and macrophages and causes the severe pneumonia Legionnaires' disease. When broth cultures enter the post-exponential growth (PE) phase or experience amino acid limitation, L. pneumophila accumulates the stringent response signal (p)ppGpp and expresses traits likely to promote transmission to a new phagocyte. The hypothesis that a stringent response mechanism regulates L. pneumophila virulence was bolstered by our finding that the avirulent mutant Lp120 contains an internal deletion in the gene encoding the stationary phase sigma factor RpoS. To test directly whether RpoS co-ordinates virulence with stationary phase, isogenic wild-type, rpoS-120 and rpoS null mutant strains were constructed and analysed. PE phase L. pneumophila became cytotoxic by an RpoS-independent pathway, but their sodium sensitivity and maximal expression of flagellin required RpoS. Likewise, full induction of sodium sensitivity by experimentally induced (p)ppGpp synthesis required RpoS. To replicate efficiently in macrophages, L. pneumophila used both RpoS-dependent and -independent pathways. Like those containing the dotA type IV secretory apparatus mutant, phagosomes harbouring either rpoS or dotA rpoS mutants rapidly acquired the late endosomal protein LAMP-1, but not the lysosomal marker Texas red-ovalbumin. Together, the data support a model in which RpoS co-operates with other regulators to induce L. pneumophila virulence in the PE phase.
引用
收藏
页码:1201 / 1214
页数:14
相关论文
共 45 条
[1]   Temporal pore formation-mediated egress from macrophages and alveolar epithelial cells by Legionella pneumophila [J].
Alli, OAT ;
Gao, LY ;
Pedersen, LL ;
Zink, S ;
Radulic, M ;
Doric, M ;
Abu Kwaik, Y .
INFECTION AND IMMUNITY, 2000, 68 (11) :6431-6440
[2]   ROLE OF RPOS IN SURVIVAL OF YERSINIA-ENTEROCOLITICA TO A VARIETY OF ENVIRONMENTAL STRESSES [J].
BADGER, JL ;
MILLER, VL .
JOURNAL OF BACTERIOLOGY, 1995, 177 (18) :5370-5373
[3]   2 DISTINCT DEFECTS IN INTRACELLULAR GROWTH COMPLEMENTED BY A SINGLE GENETIC-LOCUS IN LEGIONELLA-PNEUMOPHILA [J].
BERGER, KH ;
ISBERG, RR .
MOLECULAR MICROBIOLOGY, 1993, 7 (01) :7-19
[4]   STATIONARY-PHASE-INDUCIBLE GEARBOX PROMOTERS - DIFFERENTIAL-EFFECTS OF KATF MUTATIONS AND ROLE OF SIGMA-70 [J].
BOHANNON, DE ;
CONNELL, N ;
KEENER, J ;
TORMO, A ;
ESPINOSAURGEL, M ;
ZAMBRANO, MM ;
KOLTER, R .
JOURNAL OF BACTERIOLOGY, 1991, 173 (14) :4482-4492
[5]   Expression of Legionella pneumophila virulence traits in response to growth conditions [J].
Byrne, B ;
Swanson, MS .
INFECTION AND IMMUNITY, 1998, 66 (07) :3029-3034
[6]  
Cashel M., 1996, ESCHERICHIA COLI SAL, V1, P1458
[7]  
Dunn William A. Jr., 1994, Trends in Cell Biology, V4, P139, DOI 10.1016/0962-8924(94)90069-8
[8]   THE ALTERNATIVE SIGMA-FACTOR KATF (RPOS) REGULATES SALMONELLA VIRULENCE [J].
FANG, FC ;
LIBBY, SJ ;
BUCHMEIER, NA ;
LOEWEN, PC ;
SWITALA, J ;
HARWOOD, J ;
GUINEY, DG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (24) :11978-11982
[9]   Negative regulation by RpoS:: a case of sigma factor competition [J].
Farewell, A ;
Kvint, K ;
Nyström, T .
MOLECULAR MICROBIOLOGY, 1998, 29 (04) :1039-1051
[10]   Utilization of similar mechanisms by Legionella pneumophila to parasitize two evolutionarily distant host cells, mammalian macrophages and protozoa [J].
Gao, LY ;
Harb, OS ;
AbuKwaik, Y .
INFECTION AND IMMUNITY, 1997, 65 (11) :4738-4746