Torsional Carbon Nanotube Artificial Muscles

被引:484
作者
Foroughi, Javad [1 ]
Spinks, Geoffrey M. [1 ]
Wallace, Gordon G. [1 ]
Oh, Jiyoung [2 ]
Kozlov, Mikhail E. [2 ]
Fang, Shaoli [2 ]
Mirfakhrai, Tissaphern [3 ]
Madden, John D. W. [3 ]
Shin, Min Kyoon [4 ,5 ]
Kim, Seon Jeong [4 ,5 ]
Baughman, Ray H. [2 ]
机构
[1] Univ Wollongong, Intelligent Polymer Res Inst, ARC Ctr Excellence Electromat Sci, Wollongong, NSW 2522, Australia
[2] Univ Texas Dallas, Alan G MacDiarmid Nanotech Inst, Richardson, TX 75083 USA
[3] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
[4] Hanyang Univ, Ctr Bioartificial Muscle, Seoul 133791, South Korea
[5] Hanyang Univ, Dept Biomed Engn, Seoul 133791, South Korea
基金
加拿大自然科学与工程研究理事会; 澳大利亚研究理事会;
关键词
YARNS; ACTUATORS; ELECTROLYTE; ARRAYS; MOTOR; TUBE;
D O I
10.1126/science.1211220
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Rotary motors of conventional design can be rather complex and are therefore difficult to miniaturize; previous carbon nanotube artificial muscles provide contraction and bending, but not rotation. We show that an electrolyte-filled twist-spun carbon nanotube yarn, much thinner than a human hair, functions as a torsional artificial muscle in a simple three-electrode electrochemical system, providing a reversible 15,000 degrees rotation and 590 revolutions per minute. A hydrostatic actuation mechanism, as seen in muscular hydrostats in nature, explains the simultaneous occurrence of lengthwise contraction and torsional rotation during the yarn volume increase caused by electrochemical double-layer charge injection. The use of a torsional yarn muscle as a mixer for a fluidic chip is demonstrated.
引用
收藏
页码:494 / 497
页数:4
相关论文
共 29 条
[1]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[2]   Electrochemical properties of single-wall carbon nanotube electrodes [J].
Barisci, JN ;
Wallace, GG ;
Chattopadhyay, D ;
Papadimitrakopoulos, F ;
Baughman, RH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (09) :E409-E415
[3]   Carbon nanotube actuators [J].
Baughman, RH ;
Cui, CX ;
Zakhidov, AA ;
Iqbal, Z ;
Barisci, JN ;
Spinks, GM ;
Wallace, GG ;
Mazzoldi, A ;
De Rossi, D ;
Rinzler, AG ;
Jaschinski, O ;
Roth, S ;
Kertesz, M .
SCIENCE, 1999, 284 (5418) :1340-1344
[4]   Materials with negative compressibilities in one or more dimensions [J].
Baughman, RH ;
Stafström, S ;
Cui, CX ;
Dantas, SO .
SCIENCE, 1998, 279 (5356) :1522-1524
[5]   Measurement and modeling of McKibben pneumatic artificial muscles [J].
Chou, CP ;
Hannaford, B .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1996, 12 (01) :90-102
[6]   Torsional swelling of a hyperelastic tube with helically wound reinforcement [J].
Demirkoparan, Hasan ;
Pence, Thomas J. .
JOURNAL OF ELASTICITY, 2008, 92 (01) :61-90
[7]   Fiber-Directed Conjugated-Polymer Torsional Actuator: Nonlinear Elasticity Modeling and Experimental Validation [J].
Fang, Yang ;
Pence, Thomas J. ;
Tan, Xiaobo .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2011, 16 (04) :656-664
[8]   Rotational actuators based on carbon nanotubes [J].
Fennimore, AM ;
Yuzvinsky, TD ;
Han, WQ ;
Fuhrer, MS ;
Cumings, J ;
Zettl, A .
NATURE, 2003, 424 (6947) :408-410
[9]  
Hollerbach J. M., 1991, ROBOTICS REV, P301
[10]   Multiwalled carbon-nanotube actuators [J].
Hughes, M ;
Spinks, GM .
ADVANCED MATERIALS, 2005, 17 (04) :443-+