New strategy for the analysis of phenotypic marker antigens in brain tumor-derived neurospheres in mice and humans

被引:22
作者
Bleau, Anne-Marie [2 ]
Howard, Brian M.
Taylor, Lauren A.
Gursel, Demirkan
Greenfield, Jeffrey P.
Tung, H. Y. Lim
Holland, Eric C. [2 ]
Boockvar, John A. [1 ]
机构
[1] Cornell Univ, Lab Translat Stem Cell Res, Weill Cornell Brain Tumor Ctr, Dept Neurol Surg,Weill Cornell Med Coll, New York, NY 10021 USA
[2] Mem Sloan Kettering Canc Ctr, Dept Neurol Surg, New York, NY 10021 USA
关键词
cryosection; glioblastoma multiforme; neural stem cell; neurosphere;
D O I
10.3171/FOC/2008/24/3-4/E27
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Object. Brain tumor stem cells (TSCs) hypothetically drive the malignant phenotype of glioblastoma multiforme (GBM), and evidence suggests that a better understanding of these TSCs will have profound implications for treating gliomas. When grown in vitro, putative TSCs grow as a solid sphere, making their subsequent characterization, particularly the cells within the center of the sphere, difficult. Therefore, the purpose of this study was to develop a new method to better understand the proteomic profile of the entire population of cells within a sphere. Methods. Tumor specimens from patients with confirmed GBM and glioma models in mice were mechanically and enzymatically dissociated and grown in traditional stem cell medium to generate neurospheres. The neurospheres were then embedded in freezing medium, cryosectioned, and analyzed with immunofluorescence. Results. By sectioning neurospheres as thinly as 5 m m, the authors overcame many of the problems associated with immunolabeling whole neurospheres, such as antibody penetration into the core of the sphere and intense background fluorescence that obscures the specificity of immunoreactivity. Moreover, the small quantity of material required and the speed with which this cryosectioning and immunolabeling technique can be performed make it an attractive tool for the rapid assessment of TSC character. Conclusions. This study is the first to show that cryosectioning of neurospheres derived from glioma models in mice and GBM in humans is a feasible method of better defining the stem cell profile of a glioma.
引用
收藏
页数:8
相关论文
共 31 条
[1]  
AYUSOSACIDO A, 2007, NEUROSURGER IN PRESS
[2]   Glioma stem cells promote radioresistance by preferential activation of the DNA damage response [J].
Bao, Shideng ;
Wu, Qiulian ;
McLendon, Roger E. ;
Hao, Yueling ;
Shi, Qing ;
Hjelmeland, Anita B. ;
Dewhirst, Mark W. ;
Bigner, Darell D. ;
Rich, Jeremy N. .
NATURE, 2006, 444 (7120) :756-760
[3]   Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma [J].
Bar, Eli E. ;
Chaudhry, Aneeka ;
Lin, Alex ;
Fan, Xing ;
Schreck, Karisa ;
Matsui, William ;
Piccirillo, Sara ;
Vescovi, Angelo L. ;
DiMeco, Francesco ;
Olivi, Alessandro ;
Eberharta, Charles G. .
STEM CELLS, 2007, 25 (10) :2524-2533
[4]   CD133+ and CD133- glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles [J].
Beier, Dagmar ;
Hau, Peter ;
Proescholdt, Martin ;
Lohmeier, Annette ;
Wischhusen, Joerg ;
Oefner, Peter J. ;
Aigner, Ludwig ;
Brawanski, Alexander ;
Bogdahn, Ulrich ;
Beier, Christoph P. .
CANCER RESEARCH, 2007, 67 (09) :4010-4015
[5]   Sox2 expression defines a heterogeneous population of neurosphere-forming cells in the adult murine brain [J].
Brazel, CY ;
Limke, TL ;
Osborne, JK ;
Miura, T ;
Cai, JL ;
Pevny, L ;
Rao, MS .
AGING CELL, 2005, 4 (04) :197-207
[6]  
Clarke Michael F, 2006, Cancer Res, V66, P9339, DOI 10.1158/0008-5472.CAN-06-3126
[7]   Identification of a primitive brain-derived neural stem cell population based on aldehyde dehydrogenase activity [J].
Corti, Stefania ;
Locatelli, Federica ;
Papadimitriou, Dimitra ;
Donadoni, Chiara ;
Salani, Sabrina ;
Del Bo, Roberto ;
Strazzer, Sandra ;
Bresolin, Nereo ;
Comi, Giacomo P. .
STEM CELLS, 2006, 24 (04) :975-985
[8]   A rapid assay for drug sensitivity of glioblastoma stem cells [J].
Gal, Hilah ;
Makovitzki, Arik ;
Amariglio, Ninette ;
Rechavi, Gideon ;
Ram, Zvi ;
Givol, David .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2007, 358 (03) :908-913
[9]   Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma [J].
Galli, R ;
Binda, E ;
Orfanelli, U ;
Cipelletti, B ;
Gritti, A ;
De Vitis, S ;
Fiocco, R ;
Foroni, C ;
Dimeco, F ;
Vescovi, A .
CANCER RESEARCH, 2004, 64 (19) :7011-7021
[10]  
GREENFIELD JP, 2008, NEUROSURGER IN PRESS