Multidimensional solitons in periodic potentials

被引:259
作者
Baizakov, BB
Malomed, BA
Salerno, M
机构
[1] Univ Salerno, Dipartimento Fis ER Caianiello, I-84081 Baronissi, SA, Italy
[2] Univ Salerno, INFM, I-84081 Baronissi, SA, Italy
[3] Tel Aviv Univ, Fac Engn, Dept Interdisciplinary Studies, IL-69978 Tel Aviv, Israel
来源
EUROPHYSICS LETTERS | 2003年 / 63卷 / 05期
关键词
SPINNING SOLITONS; OPTICAL LATTICE; EINSTEIN; BREATHERS; DYNAMICS; COLLAPSE;
D O I
10.1209/epl/i2003-00579-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The existence of stable solitons in two- and three-dimensional (2D and 3D) media governed by the self-focusing cubic nonlinear Schrodinger equation with a periodic potential is demonstrated by means of the variational approximation (VA) and in direct simulations. The potential stabilizes the solitons against collapse. Direct physical realizations are a Bose-Einstein condensate (BEC) trapped in an optical lattice, and a light beam in a bulk Kerr medium of a photonic-crystal type. In the 2D case, the creation of the soliton in a weak lattice potential is possible if the norm of the field ( number of atoms in BEC, or optical power in the Kerr medium) exceeds a threshold value ( which is smaller than the critical norm leading to collapse). Both "single-cell" and "multi-cell" solitons are found, which occupy, respectively, one or several cells of the periodic potential, depending on the soliton's norm. Solitons of the former type and their stability are well predicted by VA. Stable 2D vortex solitons are found too.
引用
收藏
页码:642 / 648
页数:7
相关论文
共 45 条
[1]   Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length [J].
Abdullaev, FK ;
Caputo, JG ;
Kraenkel, RA ;
Malomed, BA .
PHYSICAL REVIEW A, 2003, 67 (01) :10
[2]   Nonlinear excitations in arrays of Bose-Einstein condensates [J].
Abdullaev, FK ;
Baizakov, BB ;
Darmanyan, SA ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW A, 2001, 64 (04) :436061-4360610
[3]   Bright soliton trains of trapped Bose-Einstein condensates [J].
Al Khawaja, U ;
Stoof, HTC ;
Hulet, RG ;
Strecker, KE ;
Partridge, GB .
PHYSICAL REVIEW LETTERS, 2002, 89 (20)
[4]   Regular spatial structures in arrays of Bose-Einstein condensates induced by modulational instability [J].
Baizakov, BB ;
Konotop, VV ;
Salerno, M .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2002, 35 (24) :5105-5119
[5]   Bose-Einstein condensates in time-dependent light potentials: Adiabatic and nonadiabatic behavior of nonlinear wave equations [J].
Band, YB ;
Trippenbach, M .
PHYSICAL REVIEW A, 2002, 65 (05) :5
[6]   Wave collapse in physics: principles and applications to light and plasma waves [J].
Berge, L .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 303 (5-6) :259-370
[7]   Quasi-2D Bose-Einstein condensation in an optical lattice [J].
Burger, S ;
Cataliotti, FS ;
Fort, C ;
Maddaloni, P ;
Minardi, F ;
Inguscio, M .
EUROPHYSICS LETTERS, 2002, 57 (01) :1-6
[8]   Matter wave dynamics in an optical lattice: decoherence of Josephson-type oscillations from the Gross-Pitaevskii equation [J].
Cardenas, M ;
Chiofalo, ML ;
Tosi, MP .
PHYSICA B-CONDENSED MATTER, 2002, 322 (1-2) :116-123
[9]   Dynamics of a matter-wave bright solitonin an expulsive potential [J].
Carr, LD ;
Castin, Y .
PHYSICAL REVIEW A, 2002, 66 (06) :10
[10]   Nonlinear atom optics and bright-gap-soliton generation in finite optical lattices [J].
Carusotto, I ;
Embriaco, D ;
La Rocca, GC .
PHYSICAL REVIEW A, 2002, 65 (05) :536111-5361110