Synchronization of non-chaotic dynamical systems

被引:20
作者
Bagnoli, F
Cecconi, F
机构
[1] Univ Florence, INFM, Unita Ric Firenze, I-50139 Florence, Italy
[2] Univ Florence, Dipartimento Matemat Applicata, I-50139 Florence, Italy
[3] INFM, Unita Ric Trieste, SISSA, I-34014 Trieste, Italy
[4] Int Sch Adv Studies, SISSA, I-34014 Trieste, Italy
关键词
transient chaos; stable chaos; synchronization; cellular automata;
D O I
10.1016/S0375-9601(01)00154-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A synchronization mechanism driven by annealed noise is studied for two replicas of a coupled-map lattice which exhibits stable chaos (SC), i.e., irregular behavior despite a negative Lyapunov spectrum. We show that the observed synchronization transition, on changing the strength of the stochastic coupling between replicas, belongs to the directed percolation universality class. This result is consistent with the behavior of chaotic deterministic cellular automata (DCA), supporting the equivalence ansatz between SC models and DCA. The coupling threshold above which the two system replicas synchronize is strictly related to the propagation velocity of perturbations in the system. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:9 / 17
页数:9
相关论文
共 29 条
[1]  
[Anonymous], 1993, CHAOS DYNAMICAL SYST
[2]   On damage-spreading transitions [J].
Bagnoli, F .
JOURNAL OF STATISTICAL PHYSICS, 1996, 85 (1-2) :151-164
[3]   Synchronization and directed percolation in coupled map lattices [J].
Bagnoli, F ;
Baroni, L ;
Palmerini, P .
PHYSICAL REVIEW E, 1999, 59 (01) :409-416
[4]   Synchronization and maximum Lyapunov exponents of cellular automata [J].
Bagnoli, F ;
Rechtman, R .
PHYSICAL REVIEW E, 1999, 59 (02) :R1307-R1310
[5]   DAMAGE SPREADING AND LYAPUNOV EXPONENTS IN CELLULAR AUTOMATA [J].
BAGNOLI, F ;
RECHTMAN, R ;
RUFFO, S .
PHYSICS LETTERS A, 1992, 172 (1-2) :34-38
[6]   Chaotic-like behaviour in chains of stable nonlinear oscillators [J].
Bonaccini, R ;
Politi, A .
PHYSICA D, 1997, 103 (1-4) :362-368
[7]   Fuzzy transition region in a one-dimensional coupled-stable-map lattice [J].
Cecconi, F ;
Livi, R ;
Politi, A .
PHYSICAL REVIEW E, 1998, 57 (03) :2703-2712
[8]   ARE ATTRACTORS RELEVANT TO TURBULENCE [J].
CRUTCHFIELD, JP ;
KANEKO, K .
PHYSICAL REVIEW LETTERS, 1988, 60 (26) :2715-2718
[9]   Weak synchronization of chaotic coupled map lattices [J].
de San Roman, FS ;
Boccaletti, S ;
Maza, D ;
Mancini, H .
PHYSICAL REVIEW LETTERS, 1998, 81 (17) :3639-3642
[10]   Synchronization of coupled systems with spatiotemporal chaos [J].
Grassberger, P .
PHYSICAL REVIEW E, 1999, 59 (03) :R2520-R2522