Efficient Ensemble Covariance Localization in Variational Data Assimilation

被引:29
作者
Bishop, Craig H. [1 ]
Hodyss, Daniel
Steinle, Peter [2 ]
Sims, Holly [2 ]
Clayton, Adam M. [3 ]
Lorenc, Andrew C. [3 ]
Barker, Dale M. [3 ]
Buehner, Mark [4 ]
机构
[1] USN, Res Lab, Marine Meteorol Div, Monterey, CA 93943 USA
[2] Bur Meteorol, Melbourne, Vic, Australia
[3] Met Off, Exeter, Devon, England
[4] Environm Canada, Meteorol Res Div, Dorval, PQ, Canada
关键词
TRANSFORM KALMAN FILTER; SYSTEM; INTERPOLATION; NWP;
D O I
10.1175/2010MWR3405.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Previous descriptions of how localized ensemble covariances can be incorporated into variational (VAR) data assimilation (DA) schemes provide few clues as to how this might be done in an efficient way. This article serves to remedy this hiatus in the literature by deriving a computationally efficient algorithm for using nonadaptively localized four-dimensional (4D) or three-dimensional (3D) ensemble covariances in variational DA. The algorithm provides computational advantages whenever (i) the localization function is a separable product of a function of the horizontal coordinate and a function of the vertical coordinate, (ii) and/or the localization length scale is much larger than the model grid spacing, (iii) and/or there are many variable types associated with each grid point, (iv) and/or 4D ensemble covariances are employed.
引用
收藏
页码:573 / 580
页数:8
相关论文
共 18 条
[1]   Flow-adaptive moderation of spurious ensemble correlations and its use in ensemble-based data assimilation [J].
Bishop, Craig H. ;
Hodyss, Daniel .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2007, 133 (629) :2029-2044
[2]   Ensemble covariances adaptively localized with ECO-RAP. Part 2: a strategy for the atmosphere [J].
Bishop, Craig H. ;
Hodyss, Daniel .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2009, 61 (01) :97-111
[3]   Ensemble covariances adaptively localized with ECO-RAP. Part 1: tests on simple error models [J].
Bishop, Craig H. ;
Hodyss, Daniel .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2009, 61 (01) :84-96
[4]   Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting [J].
Buehner, M .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (607) :1013-1043
[5]   Intercomparison of Variational Data Assimilation and the Ensemble Kalman Filter for Global Deterministic NWP. Part I: Description and Single-Observation Experiments [J].
Buehner, Mark ;
Houtekamer, P. L. ;
Charette, Cecilien ;
Mitchell, Herschel L. ;
He, Bin .
MONTHLY WEATHER REVIEW, 2010, 138 (05) :1550-1566
[6]   Intercomparison of Variational Data Assimilation and the Ensemble Kalman Filter for Global Deterministic NWP. Part II: One-Month Experiments with Real Observations [J].
Buehner, Mark ;
Houtekamer, P. L. ;
Charette, Cecilen ;
Mitchell, Herschel L. ;
He, Bin .
MONTHLY WEATHER REVIEW, 2010, 138 (05) :1567-1586
[7]  
DEE DP, 1991, Q J ROY METEOR SOC, V117, P365, DOI 10.1002/qj.49711749806
[8]   Intercomparison of the primal and dual formulations of variational data assimilation [J].
El Akkraoui, Amal ;
Gauthier, Pierre ;
Pellerin, Simon ;
Buis, Samuel .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2008, 134 (633) :1015-1025
[9]   Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter [J].
Hunt, Brian R. ;
Kostelich, Eri J. ;
Szunyogh, Istvan .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 230 (1-2) :112-126
[10]   Covariance localisation and balance in an Ensemble Kalman Filter [J].
Kepert, Jeffrey D. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2009, 135 (642) :1157-1176