Planckian birth of a quantum de Sitter universe

被引:120
作者
Ambjorn, J. [1 ,3 ]
Goerlich, A. [2 ]
Jurkiewicz, J. [2 ]
Loll, R. [3 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark
[2] Jagiellonian Univ, Inst Phys, PL-30059 Krakow, Poland
[3] Univ Utrecht, Inst Theoret Phys, NL-3584 CE Utrecht, Netherlands
关键词
D O I
10.1103/PhysRevLett.100.091304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the quantum universe emerging from a nonperturbative, Lorentzian sum over geometries can be described with a high accuracy by a four-dimensional de Sitter spacetime. By a scaling analysis involving Newton's constant, we establish that the linear size of the quantum universes under study is in between 17 and 28 Planck lengths. Somewhat surprisingly, the measured quantum fluctuations around the de Sitter universe in this regime are to good approximation still describable semiclassically. The numerical evidence presented comes from a regularization of quantum gravity in terms of causal dynamical triangulations.
引用
收藏
页数:4
相关论文
共 13 条
[1]   Reconstructing the Universe [J].
Ambjorn, J ;
Jurkiewicz, J ;
Loll, R .
PHYSICAL REVIEW D, 2005, 72 (06)
[2]   Emergence of a 4D world from causal quantum gravity [J].
Ambjorn, J ;
Jurkiewicz, J ;
Loll, R .
PHYSICAL REVIEW LETTERS, 2004, 93 (13) :131301-1
[3]   Semiclassical universe from first principles [J].
Ambjorn, J ;
Jurkiewicz, J ;
Loll, R .
PHYSICS LETTERS B, 2005, 607 (3-4) :205-213
[4]   Non-perturbative Lorentzian quantum gravity, causality and topology change [J].
Ambjorn, J ;
Loll, R .
NUCLEAR PHYSICS B, 1998, 536 (1-2) :407-434
[5]   Dynamically triangulating Lorentzian quantum gravity [J].
Ambjorn, J ;
Jurkiewicz, J ;
Loll, R .
NUCLEAR PHYSICS B, 2001, 610 (1-2) :347-382
[6]  
AMBJORN J, IN PRESS
[7]   Fixed points of higher-derivative gravity [J].
Codello, Alessandro ;
Percacci, Roberto .
PHYSICAL REVIEW LETTERS, 2006, 97 (22)
[8]   Gravitational binding in 4D dynamical triangulation [J].
deBakker, BV ;
Smit, J .
NUCLEAR PHYSICS B, 1997, 484 (1-2) :476-492
[9]   Nonlocal effective gravitational field equations and the running of Newton's constant G -: art. no. 044026 [J].
Hamber, HW ;
Williams, RM .
PHYSICAL REVIEW D, 2005, 72 (04) :1-16
[10]   Renormalizability of quantum gravity near two dimensions [J].
Kawai, H ;
Kitazawa, Y ;
Ninomiya, M .
NUCLEAR PHYSICS B, 1996, 467 (1-2) :313-331