Tutorial on maximum likelihood estimation

被引:1130
作者
Myung, IJ [1 ]
机构
[1] Ohio State Univ, Dept Psychol, Columbus, OH 43210 USA
关键词
D O I
10.1016/S0022-2496(02)00028-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, I provide a tutorial exposition on maximum likelihood estimation (MLE). The intended audience of this tutorial are researchers who practice mathematical modeling of cognition but are unfamiliar with the estimation method. Unlike least-squares estimation which is primarily a descriptive tool, MLE is a preferred method of parameter estimation in statistics and is an indispensable tool for many statistical modeling techniques, in particular in non-linear modeling with non-normal data. The purpose of this paper is to provide a good conceptual explanation of the method with illustrative examples so the reader can have a grasp of some of the basic principles. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:90 / 100
页数:11
相关论文
共 20 条
[1]  
Akaike H., 1973, 2 INT S INFORM THEOR, P267, DOI [DOI 10.1007/978-1-4612-1694-0_15, 10.1007/978-1-4612-1694-0_15]
[2]  
[Anonymous], 2002, Probability and Statistics
[3]   Multinomial processing tree models of factorial categorization [J].
Batchelder, WH ;
Crowther, CS .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 1997, 41 (01) :45-55
[4]  
Bickel P., 1977, Mathematical Statistics
[5]  
Casella G., 2002, STAT INFERENCE
[6]   OPTIMIZATION BY SIMULATED ANNEALING [J].
KIRKPATRICK, S ;
GELATT, CD ;
VECCHI, MP .
SCIENCE, 1983, 220 (4598) :671-680
[7]   Information-accumulation theory of speeded categorization [J].
Lamberts, K .
PSYCHOLOGICAL REVIEW, 2000, 107 (02) :227-260
[8]  
Linhart H., 1986, MODEL SELECTION
[9]   RETENTION OF INDIVIDUAL ITEMS [J].
MURDOCK, BB .
JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 1961, 62 (06) :618-&
[10]   Special issue on model selection [J].
Myung, IJ ;
Forster, MR ;
Browne, MW .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2000, 44 (01) :1-2