Nonparametric estimation of the measurement error model using multiple indicators

被引:154
作者
Li, T [1 ]
Vuong, Q
机构
[1] Washington State Univ, Pullman, WA 99164 USA
[2] Univ So Calif, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
measurement error model; multiple indicators; nonparametric density estimation; Fourier transformation; uniform convergence rate;
D O I
10.1006/jmva.1998.1741
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers the nonparametric estimation of the densities of the latent variable and the error term in the standard measurement error model when two or more measurements are available. Using an identification result due to Kotlarski we propose a two-step nonparametric procedure for estimating both densities based on their empirical characteristic functions. We distinguish four cases according to whether the underlying characteristic functions are ordinary smooth or super-smooth. Using the loglog Law and von Mises differentials we show that our nonparametric density estimators are uniformly convergent. We also characterize the rate of uniform convergence in each of the four cases. (C) 1998 Academic Press.
引用
收藏
页码:139 / 165
页数:27
相关论文
共 14 条
[1]  
[Anonymous], 1992, IDENTIFIABILITY STOC
[2]   ESTIMATING COEFFICIENT DISTRIBUTIONS IN RANDOM COEFFICIENT REGRESSIONS [J].
BERAN, R ;
HALL, P .
ANNALS OF STATISTICS, 1992, 20 (04) :1970-1984
[3]  
Bhattacharya RN., 1976, NORMAL APPROXIMATION
[4]  
CHUNG KL, 1949, T AM MATH SOC, V67, P36
[5]   LIMIT BEHAVIOR OF THE EMPIRICAL CHARACTERISTIC FUNCTION [J].
CSORGO, S .
ANNALS OF PROBABILITY, 1981, 9 (01) :130-144
[6]  
CSORGO S, 1980, CARLETON OTTAWA MATH, V26
[7]  
DIGGLE PJ, 1993, J ROY STAT SOC B MET, V55, P523
[9]   ON THE OPTIMAL RATES OF CONVERGENCE FOR NONPARAMETRIC DECONVOLUTION PROBLEMS [J].
FAN, JQ .
ANNALS OF STATISTICS, 1991, 19 (03) :1257-1272
[10]   Semiparametric estimation of regression models for panel data [J].
Horowitz, JL ;
Markatou, M .
REVIEW OF ECONOMIC STUDIES, 1996, 63 (01) :145-168