Linear and nonlinear Landau resonance of kinetic Alfven waves: Consequences for electron distribution and wave spectrum in the solar wind

被引:54
作者
Rudakov, L. [1 ,2 ,3 ]
Mithaiwala, M. [4 ]
Ganguli, G. [4 ]
Crabtree, C. [4 ]
机构
[1] Icarus Res Inc, Bethesda, MD 20824 USA
[2] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Astron, College Pk, MD 20742 USA
[4] USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA
基金
美国国家科学基金会;
关键词
ASTROPHYSICAL GYROKINETICS; PLASMA;
D O I
10.1063/1.3532819
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Kinetic Alfven wave turbulence in solar wind is considered and it is shown that non-Maxwellian electron distribution function has a significant effect on the dynamics of solar wind plasmas. Linear Landau damping leads to the formation of a plateau in the parallel electron distribution function which diminishes the Landau damping rate significantly. Nonlinear scattering of waves by plasma particles is generalized to short wavelengths and it is found that for the solar wind parameters this scattering is the dominant process as compared to three-wave decay and coalescence in the wave vector range 1/rho(i)<k<omega(pe)/c. Incorporation of these effects leads to the steepening of the wave spectrum between the inertial and the dissipation ranges with a spectral index between 2 and 3. This region can be labeled as the scattering range. Such steepening has been observed in the solar wind plasmas. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3532819]
引用
收藏
页数:10
相关论文
共 21 条
[1]   Universality of Solar-Wind Turbulent Spectrum from MHD to Electron Scales [J].
Alexandrova, O. ;
Saur, J. ;
Lacombe, C. ;
Mangeney, A. ;
Mitchell, J. ;
Schwartz, S. J. ;
Robert, P. .
PHYSICAL REVIEW LETTERS, 2009, 103 (16)
[2]   Nonlinear interactions between three inertial Alfven waves [J].
Brodin, G. ;
Stefano, L. ;
Shukla, P. K. .
JOURNAL OF PLASMA PHYSICS, 2007, 73 :9-13
[3]  
Davidson R., 1972, Methods in Nonlinear Plasma Theory
[4]  
DIKASOV VM, 1965, SOV PHYS JETP-USSR, V21, P608
[5]   Three dimensional character of whistler turbulence [J].
Ganguli, Gurudas ;
Rudakov, Leonid ;
Scales, Wayne ;
Wang, Joseph ;
Mithaiwala, Manish .
PHYSICS OF PLASMAS, 2010, 17 (05)
[6]   KINETIC PROCESSES IN PLASMA-HEATING BY RESONANT MODE CONVERSION OF ALFVEN WAVE [J].
HASEGAWA, A ;
CHEN, L .
PHYSICS OF FLUIDS, 1976, 19 (12) :1924-1934
[7]   A model of turbulence in magnetized plasmas: Implications for the dissipation range in the solar wind [J].
Howes, G. G. ;
Cowley, S. C. ;
Dorland, W. ;
Hammett, G. W. ;
Quataert, E. ;
Schekochihin, A. A. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2008, 113 (A5)
[8]   Astrophysical gyrokinetics: Basic equations and linear theory [J].
Howes, Gregory G. ;
Cowley, Steven C. ;
Dorland, William ;
Hammett, Gregory W. ;
Quataert, Eliot ;
Schekochihin, Alexander A. .
ASTROPHYSICAL JOURNAL, 2006, 651 (01) :590-614
[9]  
Kadomtsev B. B., 1965, Plasma Turbulence
[10]   Dissipation range dynamics:: Kinetic Alfven waves and the importance of βe [J].
Leamon, RJ ;
Smith, CW ;
Ness, NF ;
Wong, HK .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1999, 104 (A10) :22331-22344