Sensitivity analysis for convex multiobjective programming in abstract spaces

被引:17
作者
Balbas, A [1 ]
Guerra, PJ [1 ]
机构
[1] UNIV NACL EDUC DISTANCIA,FAC CIENCIAS,DEPT MATEMAT FUNDAMENTALES,E-28040 MADRID,SPAIN
关键词
D O I
10.1006/jmaa.1996.0339
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main object of this paper is to prove that for a linear or convex multiobjective program, a dual program can be obtained which gives the primal sensitivity without any special hypothesis about the way of choosing the optimal solution in the efficient set. (C) 1996 Academic Press, Inc.
引用
收藏
页码:645 / 658
页数:14
相关论文
共 28 条
[1]   STABILITY OF SOLUTIONS TO CONTROL CONSTRAINED NONLINEAR OPTIMAL-CONTROL PROBLEMS [J].
ALT, W .
APPLIED MATHEMATICS AND OPTIMIZATION, 1990, 21 (01) :53-68
[2]   LOCAL STABILITY OF SOLUTIONS TO DIFFERENTIABLE OPTIMIZATION PROBLEMS IN BANACH-SPACES [J].
ALT, W .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1991, 70 (03) :443-466
[3]  
Anderson EJ, 1987, LINEAR PROGRAMMING I
[4]  
[Anonymous], 1974, LECT NOTES MATH
[5]   DUALITY-THEORY FOR INFINITE-DIMENSIONAL MULTIOBJECTIVE LINEAR-PROGRAMMING [J].
BALBAS, A ;
HERAS, A .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1993, 68 (03) :379-388
[6]  
BALBAS A, 1992, REV R ACAD CI MADRID, V86, P289
[8]   ON THE EXISTENCE OF PARETO EFFICIENT POINTS [J].
BORWEIN, JM .
MATHEMATICS OF OPERATIONS RESEARCH, 1983, 8 (01) :64-73
[9]   DUALITY FOR MULTIPLE OBJECTIVE CONVEX-PROGRAMS [J].
BRUMELLE, S .
MATHEMATICS OF OPERATIONS RESEARCH, 1981, 6 (02) :159-172
[10]   DUALITY-THEORY FOR MAXIMIZATIONS WITH RESPECT TO CONES [J].
CORLEY, HW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 84 (02) :560-568