Inhibition of mitochondrial permeability transition pore opening by ischemic preconditioning is probably mediated by reduction of oxidative stress rather than mitochondrial protein phosphorylation

被引:141
作者
Clarke, Samantha J.
Khaliulin, Igor
Das, Manika
Parker, Joanne E.
Heesom, Kate J.
Halestrap, Andrew P. [1 ]
机构
[1] Univ Bristol, Dept Biochem, Bristol BS8 1TD, Avon, England
[2] Univ Bristol, Bristol Heart Inst, Bristol BS8 1TD, Avon, England
关键词
mitochondrial permeability transition; preconditioning; reperfusion injury; protein phosphorylation; oxidative stress;
D O I
10.1161/CIRCRESAHA.107.167072
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Inhibition of mitochondrial permeability transition pore (MPTP) opening at reperfusion is critical for cardioprotection by ischemic preconditioning (IP). Some studies have implicated mitochondrial protein phosphorylation in this effect. Here we confirm that mitochondria rapidly isolated from preischemic control and IP hearts show no significant difference in calcium-mediated MPTP opening, whereas IP inhibits MPTP opening in mitochondria isolated from IP hearts following 30 minutes of global normothermic ischemia or 3 minutes of reperfusion. Analysis of protein phosphorylation in density-gradient purified mitochondria was performed using both 2D and 1D electrophoresis, with detection of phosphoproteins using Pro-Q Diamond or phospho-amino-specific antibodies. Several phosphoproteins were detected, including voltage-dependent anion channels isoforms 1 and 2, but none showed significant IP-mediated changes either before ischemia or during ischemia and reperfusion, and neither Western blotting nor 2D fluorescence difference gel electrophoresis detected translocation of protein kinase C (alpha, epsilon, or delta isoforms), glycogen synthase kinase 3 beta, or Akt to the mitochondria following IP. In freeze-clamped hearts, changes in phosphorylation of GSK3 beta, Akt, and AMP-activated protein kinase were detected following ischemia and reperfusion but no IP-mediated changes correlated with MPTP inhibition or cardioprotection. However, measurement of mitochondrial protein carbonylation, a surrogate marker for oxidative stress, suggested that a reduction in mitochondrial oxidative stress at the end of ischemia and during reperfusion may account for IP-mediated inhibition of MPTP. The signaling pathways mediating this effect and maintaining it during reperfusion are discussed.
引用
收藏
页码:1082 / 1090
页数:9
相关论文
共 54 条
[1]   Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury [J].
Adlam, VJ ;
Harrison, JC ;
Porteous, CM ;
James, AM ;
Smith, RAJ ;
Murphy, MP ;
Sammut, IA .
FASEB JOURNAL, 2005, 19 (09) :1088-1095
[2]   Preconditioning delays Ca2+-induced mitochondrial permeability transition [J].
Argaud, L ;
Gateau-Roesch, O ;
Chalabreysse, L ;
Gomez, L ;
Loufouat, J ;
Thivolet-Béjui, F ;
Robert, D ;
Ovize, M .
CARDIOVASCULAR RESEARCH, 2004, 61 (01) :115-122
[3]   THE NATURE OF THE CHANGES IN LIVER MITOCHONDRIAL-FUNCTION INDUCED BY GLUCAGON TREATMENT OF RATS - THE EFFECTS OF INTRA-MITOCHONDRIAL VOLUME, AGING AND BENZYL ALCOHOL [J].
ARMSTON, AE ;
HALESTRAP, AP ;
SCOTT, RD .
BIOCHIMICA ET BIOPHYSICA ACTA, 1982, 681 (03) :429-439
[4]   Protein kinase activation and myocardial ischemia/reperfusion injury [J].
Armstrong, SC .
CARDIOVASCULAR RESEARCH, 2004, 61 (03) :427-436
[5]   Mitochondrial PKCε and MAPK form signaling modules in the murine heart -: Enhanced mitochondrial PKCε-MAPK interactions and differential MAPK activation in PKCε-induced cardioprotection [J].
Baines, CP ;
Zhang, J ;
Wang, GW ;
Zheng, YT ;
Xiu, JX ;
Cardwell, EM ;
Bolli, R ;
Ping, P .
CIRCULATION RESEARCH, 2002, 90 (04) :390-397
[6]   Protein kinase Cε interacts with and inhibits the permeability transition pore in cardiac mitochondria [J].
Baines, CP ;
Song, CX ;
Zheng, YT ;
Wang, GW ;
Zhang, J ;
Wang, OL ;
Guo, Y ;
Bolli, R ;
Cardwell, EM ;
Ping, PP .
CIRCULATION RESEARCH, 2003, 92 (08) :873-880
[7]   Opening of the mitochondrial permeability transition pore induces reactive oxygen species production at the level of the respiratory chain complex I [J].
Batandier, C ;
Leverve, X ;
Fontaine, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (17) :17197-17204
[8]   Effect of ischemic preconditioning and PKC activation on acidification during ischemia in rat heart [J].
Chen, W ;
Wetsel, W ;
Steenbergen, C ;
Murphy, E .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 1996, 28 (05) :871-880
[9]   Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria [J].
Costa, ADT ;
Garlid, KD ;
West, IC ;
Lincoln, TM ;
Downey, JM ;
Cohen, MV ;
Critz, SD .
CIRCULATION RESEARCH, 2005, 97 (04) :329-336
[10]   The mechanism by which the mitochondrial ATP-sensitive K+ channel opening and H2O2 inhibit the mitochondrial permeability transition [J].
Costa, Alexandre D. T. ;
Jakob, Regina ;
Costa, Cinthia L. ;
Andrukhiv, Ksenia ;
West, Ian C. ;
Garlid, Keith D. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (30) :20801-20808