Time-frequency analysis of chaotic systems

被引:128
作者
Chandre, C
Wiggins, S
Uzer, T
机构
[1] CNRS, Ctr Phys Theor, F-13288 Marseille 09, France
[2] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
[3] Georgia Inst Technol, Sch Phys, Ctr Nonlinear Sci, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
time-frequency analysis; wavelets; Hamiltonian systems;
D O I
10.1016/S0167-2789(03)00117-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe a method for analyzing the phase space structures of Hamiltonian systems. This method is based on a time-frequency decomposition of a trajectory using wavelets. The ridges of the time-frequency landscape of a trajectory, also called instantaneous frequencies, enable us to analyze the phase space structures. In particular, this method detects resonance trappings and transitions and allows a characterization of the notion of weak and strong chaos. We illustrate the method with the trajectories of the standard map and the hydrogen atom in crossed magnetic and elliptically polarized microwave fields. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:171 / 196
页数:26
相关论文
共 27 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]   Wavelet transform for analysis of molecular dynamics [J].
Askar, A ;
Cetin, AE ;
Rabitz, H .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (49) :19165-19173
[3]   Resonant, elliptical-polarization control of microwave ionization of hydrogen atoms [J].
Bellermann, MRW ;
Koch, PM ;
Richards, D .
PHYSICAL REVIEW LETTERS, 1997, 78 (20) :3840-3843
[4]  
Carmona R., 1998, PRACTICAL TIME FREQU
[5]   Thresholds to chaos and ionization for the hydrogen atom in rotating fields [J].
Chandre, C ;
Farrelly, D ;
Uzer, T .
PHYSICAL REVIEW A, 2002, 65 (05) :534021-5340210
[6]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[7]   The four final rotation states of Venus [J].
Correia, ACM ;
Laskar, J .
NATURE, 2001, 411 (6839) :767-770
[8]  
DELANDE D, 1991, LES HOUCH S, V52, P665
[9]   ASYMPTOTIC WAVELET AND GABOR ANALYSIS - EXTRACTION OF INSTANTANEOUS FREQUENCIES [J].
DELPRAT, N ;
ESCUDIE, B ;
GUILLEMAIN, P ;
KRONLANDMARTINET, R ;
TCHAMITCHIAN, P ;
TORRESANI, B .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :644-664
[10]  
Friedrich H., 1991, Theoretical Atomic Physics, P115, DOI 10.1007/978-3-662-00863-8