Amorphous and nanocrystalline luminescent Si and Ge obtained via a solid-state chemical metathesis synthesis route

被引:51
作者
McMillan, PF
Gryko, J
Bull, C
Arledge, R
Kenyon, AJ
Cressey, BA
机构
[1] UCL, Dept Chem, Christopher Ingold Lab, Mat Chem Ctr, London WC1H 0AJ, England
[2] UCL Royal Inst Great Britain, Davy Faraday Res Lab, London W1S 4BS, England
[3] Jacksonville State Univ, Dept Phys & Earth Sci, Jacksonville, AL 36265 USA
[4] Univ Edinburgh, Sch Phys, Edinburgh EH9 3JZ, Midlothian, Scotland
[5] Univ Edinburgh, Ctr Sci Extreme Condit, Edinburgh EH9 3JZ, Midlothian, Scotland
[6] UCL, Dept Elect & Elect Engn, London WC1E 7JE, England
[7] Univ Southampton, Sch Chem, Sci & Engn Electron Microscopy Ctr, Southampton SO17 1BJ, Hants, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/j.jssc.2004.12.040
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr2) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300 degrees C. Syntheses at higher temperatures gave rise to microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:937 / 949
页数:13
相关论文
共 62 条
[1]   EFFECT OF STATIC UNIAXIAL STRESS ON RAMAN SPECTRUM OF SILICON [J].
ANASTASSAKIS, E ;
PINCZUK, A ;
BURSTEIN, E ;
POLLAK, FH ;
CARDONA, M .
SOLID STATE COMMUNICATIONS, 1970, 8 (02) :133-+
[2]  
Andrianov AV, 1999, EUR MAT RES, V77, P193
[3]  
Aptekar' L. I., 1979, Soviet Physics - Doklady, V24, P993
[4]   A low-temperature solution phase route for the synthesis of silicon nanoclusters [J].
Bley, RA ;
Kauzlarich, SM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (49) :12461-12462
[5]   BOND SELECTIVITY IN SILICON FILM GROWTH [J].
BOLAND, JJ ;
PARSONS, GN .
SCIENCE, 1992, 256 (5061) :1304-1306
[6]   LUMINESCENCE OF SILICON MATERIALS - CHAINS, SHEETS, NANOCRYSTALS, NANOWIRES, MICROCRYSTALS, AND POROUS SILICON [J].
BRUS, L .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (14) :3575-3581
[7]   Plasma enhanced chemical vapor deposition of amorphous, polymorphous and microcrystalline silicon films [J].
Cabarrocas, PRI .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2000, 266 :31-37
[8]   SOLID HYDROGEN IN AMORPHOUS-SILICON - PHASE-TRANSITION [J].
CHABAL, YJ ;
PATEL, CKN .
PHYSICAL REVIEW LETTERS, 1984, 53 (18) :1771-1774
[9]   INFRARED-ABSORPTION IN A-SI-H - 1ST OBSERVATION OF GASEOUS MOLECULAR H-2 AND SI-H OVERTONE [J].
CHABAL, YJ ;
PATEL, CKN .
PHYSICAL REVIEW LETTERS, 1984, 53 (02) :210-213
[10]  
Cros C., 1970, J SOLID STATE CHEM, V2, P570, DOI [DOI 10.1016/0022-4596(70)90053-8, 10.1016/0022-4596(70)90053-8]