A new class of multivariate skew distributions with applications to Bayesian regression models

被引:439
作者
Sahu, SK [1 ]
Dey, DK
Branco, MD
机构
[1] Univ Southampton, Fac Math Studies, Highfield SO17 1BJ, England
[2] Univ Connecticut, Dept Stat, Storrs, CT 06269 USA
[3] Univ Sao Paulo, Dept Estatist, Inst Matemat & Estat, Sao Paulo, Brazil
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2003年 / 31卷 / 02期
关键词
Bayesian inference; elliptical distributions; Gibbs sampler; heavy tailed error distribution; Markov chain Monte Carlo; multivariate skewness;
D O I
10.2307/3316064
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The authors develop a new class of distributions by introducing skewness in multivariate elliptically symmetric distributions. The class, which is obtained by using transformation and conditioning, contains many standard families including the multivariate skew-normal and t distributions. The authors obtain analytical forms of the densities and study distributional properties. They give practical applications in Bayesian regression models and results on the existence of the posterior distributions and moments under improper priors for the regression coefficients. They illustrate their methods using practical examples.
引用
收藏
页码:129 / 150
页数:22
相关论文
共 26 条
[1]  
ADCOCK CJ, 2002, ASSET PRICING PORTFO
[2]  
Aigner D., 1977, Journal of Econometrics, V6, P21, DOI [DOI 10.1016/0304-4076(77)90052-5, 10.1016/0304-4076(77)90052-5]
[3]  
[Anonymous], 1996, Bayesian Statistics
[4]  
[Anonymous], J APPL ECONOMETRICS
[5]  
Arnold B.C., 2000, SANKHYA A, V62, P23
[6]   Skewed multivariate models related to hidden truncation and/or selective reporting [J].
Arnold B.C. ;
Beaver R.J. .
Test, 2002, 11 (1) :7-54
[7]   Statistical applications of the multivariate skew normal distribution [J].
Azzalini, A ;
Capitanio, A .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 :579-602
[8]   The multivariate skew-normal distribution [J].
Azzalini, A ;
DallaValle, A .
BIOMETRIKA, 1996, 83 (04) :715-726
[9]  
Bernardo J.M., 2009, Bayesian Theory, V405
[10]   Bayesian analysis of the calibration problem under elliptical distributions [J].
Branco, M ;
Bolfarine, H ;
Iglesias, P ;
Arellano-Valle, RB .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 90 (01) :69-85