Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth of PC-3 xenografts in vivo

被引:294
作者
Singh, AV
Xiao, D
Lew, KL
Dhir, R
Singh, SV
机构
[1] Hillman Canc Ctr, Pittsburgh, PA 15213 USA
[2] Univ Pittsburgh, Sch Med, Dept Pharmacol, Pittsburgh, PA 15213 USA
[3] Univ Pittsburgh, Sch Med, Dept Pathol, Pittsburgh, PA 15213 USA
[4] Univ Pittsburgh, Sch Med, Inst Canc, Pittsburgh, PA 15213 USA
关键词
D O I
10.1093/carcin/bgg178
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Sulforaphane (SFN), a constituent of cruciferous vegetables, is highly effective in affording protection against chemically induced cancers in animal models. Here, we report that SFN inhibited proliferation of cultured PC-3 human prostate cancer cells by inducing apoptosis that was characterized by appearance of cells with sub-G(0)/G(1) DNA content, formation of cytoplasmic histone associated DNA fragments and cleavage of poly(ADP-ribose)polymerase (PARP). SFN-induced apoptosis was associated with up-regulation of Bax, down-regulation of Bcl-2 and activation of caspases-3, -9 and -8. SFN-induced apoptosis, and cleavage of procaspase-3 and PARP were blocked upon pre-treatment of cells with pan caspase inhibitor z-VADfmk, and specific inhibitors of caspase-9 (z-LEHDfmk) and caspase-8 (z-IETDfmk) suggesting involvement of both caspase-9 and caspase-8 pathways in SFN-induced cell death. Oral administration of SFN (5.6 mumol, 3 times/week) significantly inhibited growth of PC-3 xenografts in nude mice. For instance, 10 days after starting therapy, the average tumor volumes in control and SFN-treated mice were 170 +/- 13 and 80 +/- 14 mm(3), respectively, reflecting a >50% reduction in tumor volume due to SFN administration. To the best of our knowledge, the present study is the first published report to document in vivo anticancer activity of SFN in a tumor xenograft model.
引用
收藏
页码:83 / 90
页数:8
相关论文
共 48 条
[1]   Death receptors: Signaling and modulation [J].
Ashkenazi, A ;
Dixit, VM .
SCIENCE, 1998, 281 (5381) :1305-1308
[2]   CYP2E1-mediated mechanism of anti-genotoxicity of the broccoli constituent sulforaphane [J].
Barcelo, S ;
Gardiner, JM ;
Gescher, A ;
Chipman, JK .
CARCINOGENESIS, 1996, 17 (02) :277-282
[3]  
Bonnesen C, 2001, CANCER RES, V61, P6120
[4]  
Brooks JD, 2001, CANCER EPIDEM BIOMAR, V10, P949
[5]   Biochemical pathways of caspase activation during apoptosis [J].
Budihardjo, I ;
Oliver, H ;
Lutter, M ;
Luo, X ;
Wang, XD .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1999, 15 :269-290
[6]   Gas chromatography mass spectrometry method for the determination of sulforaphane and sulforaphane nitrile in broccoli [J].
Chiang, WCK ;
Pusateri, DJ ;
Leitz, REA .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 1998, 46 (03) :1018-1021
[7]  
Chiao JW, 2002, INT J ONCOL, V20, P631
[8]   Chemoprevention of colonic aberrant crypt foci in Fischer rats by sulforaphane and phenethyl isothiocyanate [J].
Chung, FL ;
Conaway, CC ;
Rao, CV ;
Reddy, BS .
CARCINOGENESIS, 2000, 21 (12) :2287-2291
[9]   Fruit and vegetable intakes and prostate cancer risk [J].
Cohen, JH ;
Kristal, AR ;
Stanford, JL .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2000, 92 (01) :61-68
[10]   Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli [J].
Conaway, CC ;
Getahun, SM ;
Liebes, LL ;
Pusateri, DJ ;
Topham, DKW ;
Botero-Omary, M ;
Chung, FL .
NUTRITION AND CANCER-AN INTERNATIONAL JOURNAL, 2000, 38 (02) :168-178