Evolutionary computing for optimizing type-2 fuzzy systems in intelligent control of non-linear dynamic plants

被引:34
作者
Castillo, O [1 ]
Huesca, G [1 ]
Valdez, F [1 ]
机构
[1] Tijuana Inst Technol, Dept Comp Sci, Tijuana, Mexico
来源
NAFIPS 2005 - 2005 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY | 2005年
关键词
D O I
10.1109/NAFIPS.2005.1548542
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe in this paper the use of evolutionary computing techniques for optimizing the design of intelligent controllers. Genetic algorithms can be used to optimize the topology of a fuzzy system for control. We are considering type-2 fuzzy logic for intelligent control and as a consequence the task of designing the fuzzy system is more difficult. We use Hierarchical Genetic Algorithms because the problem of fuzzy system optimization requires a hierarchical chromosome for representing the information about membership functions and parameters.
引用
收藏
页码:247 / 251
页数:5
相关论文
共 13 条
[1]  
CASTILLO O, 2001, SOFT COMPUTING FRACT
[2]  
Holland JH, 1992, ADAPTATION NATURAL A, DOI DOI 10.7551/MITPRESS/1090.001.0001
[3]   SIMULTANEOUS DESIGN OF MEMBERSHIP FUNCTIONS AND RULE SETS FOR FUZZY CONTROLLERS USING GENETIC ALGORITHMS [J].
HOMAIFAR, A ;
MCCORMICK, E .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1995, 3 (02) :129-139
[4]   NEURO-FUZZY MODELING AND CONTROL [J].
JANG, JSR ;
SUN, CT .
PROCEEDINGS OF THE IEEE, 1995, 83 (03) :378-406
[5]  
Jang JSR., 1997, NEURO FUZZY SOFT COM
[6]  
Karr C. L., 1993, IEEE Transactions on Fuzzy Systems, V1, P46, DOI 10.1109/TFUZZ.1993.390283
[7]  
LOZANO A, 2003, THESIS DEPT COMPUTER
[8]  
Man K., 1999, Genetic Algorithms: Concepts and Designs, V1st ed.
[9]  
MELIN P, 2002, MODELLING SIMULATION
[10]   LINGUISTIC SELF-ORGANIZING PROCESS CONTROLLER [J].
PROCYK, TJ ;
MAMDANI, EH .
AUTOMATICA, 1979, 15 (01) :15-30