Multiple signalling pathways trigger the exquisite sensitivity of yeast gluconeogenic mRNAs to glucose

被引:63
作者
Yin, ZK [1 ]
Smith, RJ [1 ]
Brown, AJP [1 ]
机构
[1] UNIV ABERDEEN, MARISCHAL COLL, DEPT MOLEC & CELL BIOL, ABERDEEN AB9 1AS, SCOTLAND
关键词
D O I
10.1111/j.1365-2958.1996.tb02514.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The transcription of the yeast FBP1 and PCK1 genes, which encode the gluconeogenic enzymes fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase, is repressed by glucose. Here, we show that this repression is both very strong and exceptionally sensitive to glucose, being triggered by glucose at concentrations less than 0.005% (0.27 mM). This repression remains operative in yeast mutants carrying any one of the three hexose kinases, but is lost in a triple hxk1, hxk2, glk1 mutant. In addition, 2-deoxyglucose can trigger the repression, but 6-deoxyglucose cannot, suggesting that internalization and phosphorylation of the glucose is essential for repression to occur. While gluconeogenic gene transcription is subject to the Mig1 p-dependent pathway of glucose repression, the exquisite response to glucose is maintained in hxk2 and mig1 mutants, suggesting that this pathway is not essential for the response. The response can also be triggered by the addition of exogenous cAMP, suggesting that the Ras/cAMP pathway can mediate repression of the FPB1 and PCK1 mRNAs, However, the response is not dependent upon this pathway because it remains intact in Has, adenyl cyclase and protein kinase A mutants. The data show that yeast cells can detect very low glucose concentrations in the environment, and suggest that several distinct signalling pathways operate to repress FPB1 and PCK1 transcription in the presence of glucose.
引用
收藏
页码:751 / 764
页数:14
相关论文
共 74 条
[1]  
[Anonymous], [No title captured]
[2]   SACCHAROMYCES-CARLSBERGENSIS FDP MUTANT AND FUTILE CYCLING OF FRUCTOSE 6-PHOSPHATE [J].
BANUELOS, M ;
FRAENKEL, DG .
MOLECULAR AND CELLULAR BIOLOGY, 1982, 2 (08) :921-929
[3]   REPRESSION OF GROWTH-REGULATED G1 CYCLIN EXPRESSION BY CYCLIC-AMP IN BUDDING YEAST [J].
BARONI, MD ;
MONTI, P ;
ALBERGHINA, L .
NATURE, 1994, 371 (6495) :339-342
[4]   CHARACTERIZATION OF THE 56-KDA SUBUNIT OF YEAST TREHALOSE-6-PHOSPHATE SYNTHASE AND CLONING OF ITS GENE REVEAL ITS IDENTITY WITH THE PRODUCT OF CIF1, A REGULATOR OF CARBON CATABOLITE INACTIVATION [J].
BELL, W ;
KLAASSEN, P ;
OHNACKER, M ;
BOLLER, T ;
HERWEIJER, M ;
SCHOPPINK, P ;
VANDERZEE, P ;
WIEMKEN, A .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1992, 209 (03) :951-959
[5]   5'-SECONDARY STRUCTURE FORMATION, IN CONTRAST TO A SHORT STRING OF NON-PREFERRED CODONS, INHIBITS THE TRANSLATION OF THE PYRUVATE-KINASE MESSENGER-RNA IN YEAST [J].
BETTANY, AJE ;
MOORE, PA ;
CAFFERKEY, R ;
BELL, LD ;
GOODEY, AR ;
CARTER, BLA ;
BROWN, AJP .
YEAST, 1989, 5 (03) :187-198
[6]   STUDIES ON THE MECHANISM OF THE GLUCOSE-INDUCED CAMP SIGNAL IN GLYCOLYSIS AND GLUCOSE REPRESSION MUTANTS OF THE YEAST SACCHAROMYCES-CEREVISIAE [J].
BEULLENS, M ;
MBONYI, K ;
GEERTS, L ;
GLADINES, D ;
DETREMERIE, K ;
JANS, AWH ;
THEVELEIN, JM .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1988, 172 (01) :227-231
[7]   YEAST SUGAR TRANSPORTERS [J].
BISSON, LF ;
COONS, DM ;
KRUCKEBERG, AL ;
LEWIS, DA .
CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1993, 28 (04) :259-308
[8]   TREHALOSE-6-PHOSPHATE, A NEW REGULATOR OF YEAST GLYCOLYSIS THAT INHIBITS HEXOKINASES [J].
BLAZQUEZ, MA ;
LAGUNAS, R ;
GANCEDO, C ;
GANCEDO, JM .
FEBS LETTERS, 1993, 329 (1-2) :51-54
[9]   DIFFERENT SIGNALS CONTROL THE ACTIVATION OF GLYCOLYSIS IN THE YEAST SACCHAROMYCES-CEREVISIAE [J].
BOLES, E ;
HEINISCH, J ;
ZIMMERMANN, FK .
YEAST, 1993, 9 (07) :761-770
[10]   INDUCTION OF PYRUVATE DECARBOXYLASE IN GLYCOLYSIS MUTANTS OF SACCHAROMYCES-CEREVISIAE CORRELATES WITH THE CONCENTRATIONS OF 3-CARBON GLYCOLYTIC METABOLITES [J].
BOLES, E ;
ZIMMERMANN, FK .
ARCHIVES OF MICROBIOLOGY, 1993, 160 (04) :324-328