Rayleigh and Prandtl number scaling in the bulk of Rayleigh-Benard turbulence

被引:86
作者
Calzavarini, E
Lohse, D
Toschi, F
Tripiccione, R
机构
[1] Univ Ferrara, Dipartimento Fis, I-43100 Parma, Italy
[2] Ist Nazl Fis Nucl, I-43100 Parma, Italy
[3] Univ Twente, Dept Appl Phys, NL-7500 AE Enschede, Netherlands
[4] Univ Twente, JM Burgers Ctr Fluid Dynam, NL-7500 AE Enschede, Netherlands
[5] IAC, CNR, I-43100 Parma, Italy
[6] Ist Nazl Fis Nucl, I-43100 Parma, Italy
关键词
D O I
10.1063/1.1884165
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The Ra and Pr number scaling of the Nusselt number Nu, the Reynolds number Re, the temperature fluctuations, and the kinetic and thermal dissipation rates is studied for (numerical) homogeneous Rayleigh-Benard turbulence, i.e., Rayleigh-Benard turbulence with periodic boundary conditions in all directions and a volume forcing of the temperature field by a mean gradient. This system serves as model system for the bulk of Rayleigh-Benard flow and therefore as model for the so-called "ultimate regime of thermal convection." With respect to the Ra dependence of Nu and Re we confirm our earlier results [D. Lohse and F. Toschi, "The ultimate state of thermal convection," Phys. Rev. Lett. 90, 034502 (2003)] which are consistent with the Kraichnan theory [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374 (1962)] and the Grossmann-Lohse (GL) theory [S. Grossmann and D. Lohse, "Scaling in thermal convection: A unifying view," J. Fluid Mech. 407, 27 (2000); "Thermal convection for large Prandtl number," Phys. Rev. Lett. 86, 3316 (2001); "Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection," Phys. Rev. E 66, 016305 (2002); "Fluctuations in turbulent Rayleigh-Benard convection: The role of plumes," Phys. Fluids 16, 4462 (2004)], which both predict Nu~Ra-q(u)1/2 and Re~Ra1/2. However the Pr dependence within these two theories is different. Here we show that the numerical data are consistent with the GL theory Nu~Pr1/2, Re~Pr-1/2. For the thermal and kinetic dissipation rates we find e(/(kD2L-2)~(Re Pr)0.87 and e)/(n3L-4)~Re2.77, both near (but not fully consistent) the bulk dominated behavior, whereas the temperature fluctuations do not depend on Ra and Pr. Finally, the dynamics of the heat transport is studied and put into the context of a recent theoretical finding by Doering ["Comment on ultimate state of thermal convection" (private communication)]. 2005 American Institute of Physics.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 60 条
[1]   Prandtl-number dependence of heat transport in turbulent Rayleigh-Benard convection [J].
Ahlers, G ;
Xu, XC .
PHYSICAL REVIEW LETTERS, 2001, 86 (15) :3320-3323
[2]   Statistical properties of the fluctuations of the heat transfer in turbulent convection [J].
Aumaître, S ;
Fauve, S .
EUROPHYSICS LETTERS, 2003, 62 (06) :822-828
[3]   Status of APEmille [J].
Bartoloni, A ;
Boucaud, P ;
Cabibbo, N ;
Calvayrac, F ;
Della Morte, M ;
De Pietri, R ;
De Riso, P ;
Di Carlo, F ;
Di Renzo, F ;
Errico, W ;
Frezzotti, R ;
Giorgino, T ;
Heitger, J ;
Lonardo, A ;
Loukianov, M ;
Magazzú, G ;
Micheli, J ;
Morenas, V ;
Paschedag, N ;
Péne, O ;
Petronzio, R ;
Pleiter, D ;
Rapuano, F ;
Rolf, J ;
Rossetti, D ;
Sartori, L ;
Simma, H ;
Schifano, F ;
Torelli, M ;
Tripiccione, R ;
Vicini, P ;
Wegner, P .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 :1043-1045
[4]   BOUNDARY-LAYER LENGTH SCALES IN THERMAL TURBULENCE [J].
BELMONTE, A ;
TILGNER, A ;
LIBCHABER, A .
PHYSICAL REVIEW LETTERS, 1993, 70 (26) :4067-4070
[5]   Universality of anisotropic fluctuations from numerical simulations of turbulent flows [J].
Biferale, L ;
Calzavarini, E ;
Toschi, F ;
Tripiccione, R .
EUROPHYSICS LETTERS, 2003, 64 (04) :461-467
[6]   Turbulent Convection Driven by a Constant Temperature Gradient [J].
Borue V. ;
Orszag S.A. .
Journal of Scientific Computing, 1997, 12 (3) :305-351
[7]   Effect of inertia in Rayleigh-Benard convection [J].
Breuer, M ;
Wessling, S ;
Schmalzl, J ;
Hansen, U .
PHYSICAL REVIEW E, 2004, 69 (02) :026302-1
[8]   Evidences of Bolgiano-Obhukhov scaling in three-dimensional Rayleigh-Benard convection [J].
Calzavarini, E ;
Toschi, F ;
Tripiccione, R .
PHYSICAL REVIEW E, 2002, 66 (01)
[9]   Convective turbulence in mercury: Scaling laws and spectra [J].
Camussi, R ;
Verzicco, R .
PHYSICS OF FLUIDS, 1998, 10 (02) :516-527
[10]   SCALING OF HARD THERMAL TURBULENCE IN RAYLEIGH-BENARD CONVECTION [J].
CASTAING, B ;
GUNARATNE, G ;
HESLOT, F ;
KADANOFF, L ;
LIBCHABER, A ;
THOMAE, S ;
WU, XZ ;
ZALESKI, S ;
ZANETTI, G .
JOURNAL OF FLUID MECHANICS, 1989, 204 :1-30