Magnetosome Expression of Functional Camelid Antibody Fragments (Nanobodies) in Magnetospirillum gryphiswaldense

被引:58
作者
Pollithy, Anna [1 ]
Romer, Tina [2 ,3 ]
Lang, Claus [1 ]
Mueller, Frank D. [1 ]
Helma, Jonas [2 ]
Leonhardt, Heinrich [2 ]
Rothbauer, Ulrich [2 ,3 ]
Schueler, Dirk [1 ]
机构
[1] Univ Munich, Dept Biol 1, Bereich Mikrobiol, Biozentrum LMU, D-82152 Martinsried, Germany
[2] Univ Munich, Dept Biol 2, Bereich Anthropol & Humangenet, Biozentrum LMU, D-82152 Martinsried, Germany
[3] ChromoTek GmbH, D-82152 Martinsried, Germany
关键词
BACTERIAL MAGNETIC PARTICLES; ESCHERICHIA-COLI; IN-VIVO; PROTEINS; NANOPARTICLES; CELLS; EFFICIENT;
D O I
10.1128/AEM.05282-11
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Numerous applications of conventional and biogenic magnetic nanoparticles (MNPs), such as in diagnostics, immunomagnetic separations, and magnetic cell labeling, require the immobilization of antibodies. This is usually accomplished by chemical conjugation, which, however, has several disadvantages, such as poor efficiency and the need for coupling chemistry. Here, we describe a novel strategy to display a functional camelid antibody fragment (nanobody) from an alpaca (Lama pacos) on the surface of bacterial biogenic magnetic nanoparticles (magnetosomes). Magnetosome-specific expression of a red fluorescent protein (RFP)-binding nanobody (RBP) in vivo was accomplished by genetic fusion of RBP to the magnetosome protein MamC in the magnetite-synthesizing bacterium Magnetospirillum gryphiswaldense. We demonstrate that isolated magnetosomes expressing MamC-RBP efficiently recognize and bind their antigen in vitro and can be used for immunoprecipitation of RFP-tagged proteins and their interaction partners from cell extracts. In addition, we show that coexpression of monomeric RFP (mRFP or its variant mCherry) and MamC-RBP results in intracellular recognition and magnetosome recruitment of RFP within living bacteria. The intracellular expression of a functional nanobody targeted to a specific bacterial compartment opens new possibilities for in vivo synthesis of MNP-immobilized nanobodies. Moreover, intracellular nanotraps can be generated to manipulate bacterial structures in live cells.
引用
收藏
页码:6165 / 6171
页数:7
相关论文
共 45 条
[1]  
[Anonymous], 2012, Molecular Cloning: A Laboratory Manual
[2]   Two-hybrid fluorescence cross-correlation spectroscopy detects protein-protein interactions in vivo [J].
Baudendistel, N ;
Müller, G ;
Waldeck, W ;
Angel, P ;
Langowski, J .
CHEMPHYSCHEM, 2005, 6 (05) :984-990
[3]   Nanoparticles for cell labeling [J].
Bhirde, Ashwinkumar ;
Xie, Jin ;
Swierczewska, Maggie ;
Chen, Xiaoyuan .
NANOSCALE, 2011, 3 (01) :142-153
[4]   Semisynthetic biogenic magnetosome nanoparticles for the detection of proteins and nucleic acids [J].
Ceyhan, Buelent ;
Alhorn, Petra ;
Lang, Claus ;
Schueler, Dirk ;
Niemeyer, Christof M. .
SMALL, 2006, 2 (11) :1251-1255
[5]   Magnetotactic Bacteria and Magnetosomes [J].
Faivre, Damien ;
Schueler, Dirk .
CHEMICAL REVIEWS, 2008, 108 (11) :4875-4898
[6]   Isolation of antigen specific Llama VHH antibody fragments and their high level secretion by Saccharomyces cerevisiae [J].
Frenken, LGJ ;
van der Linden, RHJ ;
Hermans, PWJJ ;
Bos, JW ;
Ruuls, RC ;
de Geus, B ;
Verrips, CT .
JOURNAL OF BIOTECHNOLOGY, 2000, 78 (01) :11-21
[7]  
Frimpong RA, 2010, NANOMEDICINE-UK, V5, P1401, DOI [10.2217/nnm.10.114, 10.2217/NNM.10.114]
[8]   Biochemical and proteomic analysis of the magnetosome membrane in Magnetospitillum gryphiswaldense [J].
Grünberg, K ;
Müller, EC ;
Otto, A ;
Reszka, R ;
Linder, D ;
Kube, M ;
Reinhardt, R ;
Schüler, D .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (02) :1040-1050
[9]   NATURALLY-OCCURRING ANTIBODIES DEVOID OF LIGHT-CHAINS [J].
HAMERSCASTERMAN, C ;
ATARHOUCH, T ;
MUYLDERMANS, S ;
ROBINSON, G ;
HAMERS, C ;
SONGA, EB ;
BENDAHMAN, N ;
HAMERS, R .
NATURE, 1993, 363 (6428) :446-448
[10]   STUDIES ON TRANSFORMATION OF ESCHERICHIA-COLI WITH PLASMIDS [J].
HANAHAN, D .
JOURNAL OF MOLECULAR BIOLOGY, 1983, 166 (04) :557-580